An Efficient Approach on Rare Association Rule Mining View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

N. Hoque , B. Nath , D. K. Bhattacharyya

ABSTRACT

:Traditional association mining techniques are based on support-confidence framework, which enable us to generate frequent rules based on frequent itemsets identified on a market basket dataset with reference to two user defined threshold minsup and minconf. However, the infrequent itemsets referred here as rare itemsets ignored by those techniques often carry useful information in certain real life applications. This paper presents an effective method to generate frequent as well as rare itemsets and also consequently the rules. The effectiveness of the proposed method is established over several synthetic and real life datasets. To address the limitations of support-confidence based frequent and rare itemsets generation technique, a multi-objective rule generation method also has been introduced. The method has been found to perform satisfactory over several real life datasets. More... »

PAGES

193-203

Book

TITLE

Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)

ISBN

978-81-322-1037-5
978-81-322-1038-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17

DOI

http://dx.doi.org/10.1007/978-81-322-1038-2_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009706984


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University, Napam, Sonitpur, Assam, 784028, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoque", 
        "givenName": "N.", 
        "id": "sg:person.01355240052.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University, Napam, Sonitpur, Assam, 784028, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nath", 
        "givenName": "B.", 
        "id": "sg:person.013356517216.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356517216.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University, Napam, Sonitpur, Assam, 784028, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "D. K.", 
        "id": "sg:person.013101457343.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": ":Traditional association mining techniques are based on support-confidence framework, which enable us to generate frequent rules based on frequent itemsets identified on a market basket dataset with reference to two user defined threshold minsup and minconf. However, the infrequent itemsets referred here as rare itemsets ignored by those techniques often carry useful information in certain real life applications. This paper presents an effective method to generate frequent as well as rare itemsets and also consequently the rules. The effectiveness of the proposed method is established over several synthetic and real life datasets. To address the limitations of support-confidence based frequent and rare itemsets generation technique, a multi-objective rule generation method also has been introduced. The method has been found to perform satisfactory over several real life datasets.", 
    "editor": [
      {
        "familyName": "Bansal", 
        "givenName": "Jagdish Chand", 
        "type": "Person"
      }, 
      {
        "familyName": "Singh", 
        "givenName": "Pramod Kumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Deep", 
        "givenName": "Kusum", 
        "type": "Person"
      }, 
      {
        "familyName": "Pant", 
        "givenName": "Millie", 
        "type": "Person"
      }, 
      {
        "familyName": "Nagar", 
        "givenName": "Atulya K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-81-322-1038-2_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-81-322-1037-5", 
        "978-81-322-1038-2"
      ], 
      "name": "Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)", 
      "type": "Book"
    }, 
    "name": "An Efficient Approach on Rare Association Rule Mining", 
    "pagination": "193-203", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-81-322-1038-2_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e3e469d08c120a5ceaaeb57df9e54168a691a4895e9c339818dcfad151c6113"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009706984"
        ]
      }
    ], 
    "publisher": {
      "location": "India", 
      "name": "Springer India", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-81-322-1038-2_17", 
      "https://app.dimensions.ai/details/publication/pub.1009706984"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000016.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-81-322-1038-2_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-81-322-1038-2_17 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N24c9ed9e47054b8a90432586437ad3d9
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description :Traditional association mining techniques are based on support-confidence framework, which enable us to generate frequent rules based on frequent itemsets identified on a market basket dataset with reference to two user defined threshold minsup and minconf. However, the infrequent itemsets referred here as rare itemsets ignored by those techniques often carry useful information in certain real life applications. This paper presents an effective method to generate frequent as well as rare itemsets and also consequently the rules. The effectiveness of the proposed method is established over several synthetic and real life datasets. To address the limitations of support-confidence based frequent and rare itemsets generation technique, a multi-objective rule generation method also has been introduced. The method has been found to perform satisfactory over several real life datasets.
7 schema:editor N42ce45c4ee554da4b2ff0f989bd76016
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N53c22c430b114ffa911ac3f8e13e38fb
12 schema:name An Efficient Approach on Rare Association Rule Mining
13 schema:pagination 193-203
14 schema:productId N35104ee773b64a7988c91ccd2e6228cf
15 N428c36a251074b79ab1f4ef699680d76
16 Nf3a12a649edd4c93890835301dc45ab4
17 schema:publisher Ndbab05103f66495d9d3e174ce558e02a
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009706984
19 https://doi.org/10.1007/978-81-322-1038-2_17
20 schema:sdDatePublished 2019-04-15T11:16
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Ne362b7822a004eb09c9767714814d1b8
23 schema:url http://link.springer.com/10.1007/978-81-322-1038-2_17
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0738b4f92a154445b4a6b482f938267e schema:familyName Deep
28 schema:givenName Kusum
29 rdf:type schema:Person
30 N0cd329a95f8b4a4982bc3b44cc8f1b02 schema:familyName Bansal
31 schema:givenName Jagdish Chand
32 rdf:type schema:Person
33 N15089707317f46b6b0b6d3fe5749b0db schema:familyName Nagar
34 schema:givenName Atulya K.
35 rdf:type schema:Person
36 N1a1cf6f07b0147d28bdc229c69f7eec5 schema:familyName Pant
37 schema:givenName Millie
38 rdf:type schema:Person
39 N24c9ed9e47054b8a90432586437ad3d9 rdf:first sg:person.01355240052.68
40 rdf:rest N40efa37111ad4c5788da44a93e066cf6
41 N35104ee773b64a7988c91ccd2e6228cf schema:name readcube_id
42 schema:value 2e3e469d08c120a5ceaaeb57df9e54168a691a4895e9c339818dcfad151c6113
43 rdf:type schema:PropertyValue
44 N40efa37111ad4c5788da44a93e066cf6 rdf:first sg:person.013356517216.81
45 rdf:rest Ncfa58b426baf42fd93363342a8b72888
46 N428c36a251074b79ab1f4ef699680d76 schema:name doi
47 schema:value 10.1007/978-81-322-1038-2_17
48 rdf:type schema:PropertyValue
49 N42ce45c4ee554da4b2ff0f989bd76016 rdf:first N0cd329a95f8b4a4982bc3b44cc8f1b02
50 rdf:rest Ne0f2402550b64f569363a1f04497dd2f
51 N53c22c430b114ffa911ac3f8e13e38fb schema:isbn 978-81-322-1037-5
52 978-81-322-1038-2
53 schema:name Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)
54 rdf:type schema:Book
55 N59e24c011a694612bbd081c8183e4059 schema:familyName Singh
56 schema:givenName Pramod Kumar
57 rdf:type schema:Person
58 Na867971a5b1f4cd08baf8e56bd97de58 rdf:first N1a1cf6f07b0147d28bdc229c69f7eec5
59 rdf:rest Nd38abe1c3e5444e5befb3cd7b2627a41
60 Ncfa58b426baf42fd93363342a8b72888 rdf:first sg:person.013101457343.35
61 rdf:rest rdf:nil
62 Nd38abe1c3e5444e5befb3cd7b2627a41 rdf:first N15089707317f46b6b0b6d3fe5749b0db
63 rdf:rest rdf:nil
64 Ndbab05103f66495d9d3e174ce558e02a schema:location India
65 schema:name Springer India
66 rdf:type schema:Organisation
67 Ne0f2402550b64f569363a1f04497dd2f rdf:first N59e24c011a694612bbd081c8183e4059
68 rdf:rest Ne8909f927b8e446f9aff702eef0faf80
69 Ne362b7822a004eb09c9767714814d1b8 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ne8909f927b8e446f9aff702eef0faf80 rdf:first N0738b4f92a154445b4a6b482f938267e
72 rdf:rest Na867971a5b1f4cd08baf8e56bd97de58
73 Nf3a12a649edd4c93890835301dc45ab4 schema:name dimensions_id
74 schema:value pub.1009706984
75 rdf:type schema:PropertyValue
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information Systems
81 rdf:type schema:DefinedTerm
82 sg:person.013101457343.35 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
83 schema:familyName Bhattacharyya
84 schema:givenName D. K.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35
86 rdf:type schema:Person
87 sg:person.013356517216.81 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
88 schema:familyName Nath
89 schema:givenName B.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356517216.81
91 rdf:type schema:Person
92 sg:person.01355240052.68 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
93 schema:familyName Hoque
94 schema:givenName N.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68
96 rdf:type schema:Person
97 https://www.grid.ac/institutes/grid.45982.32 schema:alternateName Tezpur University
98 schema:name Tezpur University, Napam, Sonitpur, Assam, 784028, India
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...