An Efficient Approach on Rare Association Rule Mining View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

N. Hoque , B. Nath , D. K. Bhattacharyya

ABSTRACT

:Traditional association mining techniques are based on support-confidence framework, which enable us to generate frequent rules based on frequent itemsets identified on a market basket dataset with reference to two user defined threshold minsup and minconf. However, the infrequent itemsets referred here as rare itemsets ignored by those techniques often carry useful information in certain real life applications. This paper presents an effective method to generate frequent as well as rare itemsets and also consequently the rules. The effectiveness of the proposed method is established over several synthetic and real life datasets. To address the limitations of support-confidence based frequent and rare itemsets generation technique, a multi-objective rule generation method also has been introduced. The method has been found to perform satisfactory over several real life datasets. More... »

PAGES

193-203

Book

TITLE

Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)

ISBN

978-81-322-1037-5
978-81-322-1038-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17

DOI

http://dx.doi.org/10.1007/978-81-322-1038-2_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009706984


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University, Napam, Sonitpur, Assam, 784028, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoque", 
        "givenName": "N.", 
        "id": "sg:person.01355240052.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University, Napam, Sonitpur, Assam, 784028, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nath", 
        "givenName": "B.", 
        "id": "sg:person.013356517216.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356517216.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University, Napam, Sonitpur, Assam, 784028, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "D. K.", 
        "id": "sg:person.013101457343.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": ":Traditional association mining techniques are based on support-confidence framework, which enable us to generate frequent rules based on frequent itemsets identified on a market basket dataset with reference to two user defined threshold minsup and minconf. However, the infrequent itemsets referred here as rare itemsets ignored by those techniques often carry useful information in certain real life applications. This paper presents an effective method to generate frequent as well as rare itemsets and also consequently the rules. The effectiveness of the proposed method is established over several synthetic and real life datasets. To address the limitations of support-confidence based frequent and rare itemsets generation technique, a multi-objective rule generation method also has been introduced. The method has been found to perform satisfactory over several real life datasets.", 
    "editor": [
      {
        "familyName": "Bansal", 
        "givenName": "Jagdish Chand", 
        "type": "Person"
      }, 
      {
        "familyName": "Singh", 
        "givenName": "Pramod Kumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Deep", 
        "givenName": "Kusum", 
        "type": "Person"
      }, 
      {
        "familyName": "Pant", 
        "givenName": "Millie", 
        "type": "Person"
      }, 
      {
        "familyName": "Nagar", 
        "givenName": "Atulya K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-81-322-1038-2_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-81-322-1037-5", 
        "978-81-322-1038-2"
      ], 
      "name": "Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)", 
      "type": "Book"
    }, 
    "name": "An Efficient Approach on Rare Association Rule Mining", 
    "pagination": "193-203", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-81-322-1038-2_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e3e469d08c120a5ceaaeb57df9e54168a691a4895e9c339818dcfad151c6113"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009706984"
        ]
      }
    ], 
    "publisher": {
      "location": "India", 
      "name": "Springer India", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-81-322-1038-2_17", 
      "https://app.dimensions.ai/details/publication/pub.1009706984"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000016.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-81-322-1038-2_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-81-322-1038-2_17 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nc5c874ce96924a38816cad0168bf4176
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description :Traditional association mining techniques are based on support-confidence framework, which enable us to generate frequent rules based on frequent itemsets identified on a market basket dataset with reference to two user defined threshold minsup and minconf. However, the infrequent itemsets referred here as rare itemsets ignored by those techniques often carry useful information in certain real life applications. This paper presents an effective method to generate frequent as well as rare itemsets and also consequently the rules. The effectiveness of the proposed method is established over several synthetic and real life datasets. To address the limitations of support-confidence based frequent and rare itemsets generation technique, a multi-objective rule generation method also has been introduced. The method has been found to perform satisfactory over several real life datasets.
7 schema:editor N8dbea8770f354eaabda8a944db091653
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne7b3933b3b0f4ef39d56547a22288a26
12 schema:name An Efficient Approach on Rare Association Rule Mining
13 schema:pagination 193-203
14 schema:productId N09eeec0607994ec99646cfc6e2be4ec6
15 N3728c94415e54c9994a0345b6a9c385a
16 Ne63f8a4a04c14e91af4f8afba1b69ec1
17 schema:publisher N5f5e82c962ef4c1ea48684a4277bd97c
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009706984
19 https://doi.org/10.1007/978-81-322-1038-2_17
20 schema:sdDatePublished 2019-04-15T11:16
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N77d889cf4b9743698e24d8e74e2c6be9
23 schema:url http://link.springer.com/10.1007/978-81-322-1038-2_17
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N09eeec0607994ec99646cfc6e2be4ec6 schema:name doi
28 schema:value 10.1007/978-81-322-1038-2_17
29 rdf:type schema:PropertyValue
30 N17647e520b83489988f244267f02bca8 rdf:first Nead31649bbdf4c0886bcb48a9fd980d7
31 rdf:rest rdf:nil
32 N1b5e1b3ff1314f03bd144c190cc7502a schema:familyName Pant
33 schema:givenName Millie
34 rdf:type schema:Person
35 N3728c94415e54c9994a0345b6a9c385a schema:name dimensions_id
36 schema:value pub.1009706984
37 rdf:type schema:PropertyValue
38 N5f5e82c962ef4c1ea48684a4277bd97c schema:location India
39 schema:name Springer India
40 rdf:type schema:Organisation
41 N65ccbdef325f4470aabf36bab031a565 rdf:first Nfdc681ca5e1e41b1a19c05a2c37b403e
42 rdf:rest N71e04695ee244685ac5b26dca411cf08
43 N71e04695ee244685ac5b26dca411cf08 rdf:first Nf67f3ff61034402a9d9350fe2e19478b
44 rdf:rest Naaef44373aea45979e0495789e108c09
45 N77d889cf4b9743698e24d8e74e2c6be9 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N8dbea8770f354eaabda8a944db091653 rdf:first Nec8ce1320644401ab1e2c71b4bddabc0
48 rdf:rest N65ccbdef325f4470aabf36bab031a565
49 Naaef44373aea45979e0495789e108c09 rdf:first N1b5e1b3ff1314f03bd144c190cc7502a
50 rdf:rest N17647e520b83489988f244267f02bca8
51 Nc5c874ce96924a38816cad0168bf4176 rdf:first sg:person.01355240052.68
52 rdf:rest Nfb859f1b8bc741ff86ecf939d4ee9fea
53 Ncab0eafcf9a043f09bd737db503d468c rdf:first sg:person.013101457343.35
54 rdf:rest rdf:nil
55 Ne63f8a4a04c14e91af4f8afba1b69ec1 schema:name readcube_id
56 schema:value 2e3e469d08c120a5ceaaeb57df9e54168a691a4895e9c339818dcfad151c6113
57 rdf:type schema:PropertyValue
58 Ne7b3933b3b0f4ef39d56547a22288a26 schema:isbn 978-81-322-1037-5
59 978-81-322-1038-2
60 schema:name Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)
61 rdf:type schema:Book
62 Nead31649bbdf4c0886bcb48a9fd980d7 schema:familyName Nagar
63 schema:givenName Atulya K.
64 rdf:type schema:Person
65 Nec8ce1320644401ab1e2c71b4bddabc0 schema:familyName Bansal
66 schema:givenName Jagdish Chand
67 rdf:type schema:Person
68 Nf67f3ff61034402a9d9350fe2e19478b schema:familyName Deep
69 schema:givenName Kusum
70 rdf:type schema:Person
71 Nfb859f1b8bc741ff86ecf939d4ee9fea rdf:first sg:person.013356517216.81
72 rdf:rest Ncab0eafcf9a043f09bd737db503d468c
73 Nfdc681ca5e1e41b1a19c05a2c37b403e schema:familyName Singh
74 schema:givenName Pramod Kumar
75 rdf:type schema:Person
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information Systems
81 rdf:type schema:DefinedTerm
82 sg:person.013101457343.35 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
83 schema:familyName Bhattacharyya
84 schema:givenName D. K.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35
86 rdf:type schema:Person
87 sg:person.013356517216.81 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
88 schema:familyName Nath
89 schema:givenName B.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356517216.81
91 rdf:type schema:Person
92 sg:person.01355240052.68 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
93 schema:familyName Hoque
94 schema:givenName N.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68
96 rdf:type schema:Person
97 https://www.grid.ac/institutes/grid.45982.32 schema:alternateName Tezpur University
98 schema:name Tezpur University, Napam, Sonitpur, Assam, 784028, India
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...