An Efficient Approach on Rare Association Rule Mining View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

N. Hoque , B. Nath , D. K. Bhattacharyya

ABSTRACT

:Traditional association mining techniques are based on support-confidence framework, which enable us to generate frequent rules based on frequent itemsets identified on a market basket dataset with reference to two user defined threshold minsup and minconf. However, the infrequent itemsets referred here as rare itemsets ignored by those techniques often carry useful information in certain real life applications. This paper presents an effective method to generate frequent as well as rare itemsets and also consequently the rules. The effectiveness of the proposed method is established over several synthetic and real life datasets. To address the limitations of support-confidence based frequent and rare itemsets generation technique, a multi-objective rule generation method also has been introduced. The method has been found to perform satisfactory over several real life datasets. More... »

PAGES

193-203

Book

TITLE

Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)

ISBN

978-81-322-1037-5
978-81-322-1038-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17

DOI

http://dx.doi.org/10.1007/978-81-322-1038-2_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009706984


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University, Napam, Sonitpur, Assam, 784028, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoque", 
        "givenName": "N.", 
        "id": "sg:person.01355240052.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University, Napam, Sonitpur, Assam, 784028, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nath", 
        "givenName": "B.", 
        "id": "sg:person.013356517216.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356517216.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tezpur University", 
          "id": "https://www.grid.ac/institutes/grid.45982.32", 
          "name": [
            "Tezpur University, Napam, Sonitpur, Assam, 784028, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "D. K.", 
        "id": "sg:person.013101457343.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": ":Traditional association mining techniques are based on support-confidence framework, which enable us to generate frequent rules based on frequent itemsets identified on a market basket dataset with reference to two user defined threshold minsup and minconf. However, the infrequent itemsets referred here as rare itemsets ignored by those techniques often carry useful information in certain real life applications. This paper presents an effective method to generate frequent as well as rare itemsets and also consequently the rules. The effectiveness of the proposed method is established over several synthetic and real life datasets. To address the limitations of support-confidence based frequent and rare itemsets generation technique, a multi-objective rule generation method also has been introduced. The method has been found to perform satisfactory over several real life datasets.", 
    "editor": [
      {
        "familyName": "Bansal", 
        "givenName": "Jagdish Chand", 
        "type": "Person"
      }, 
      {
        "familyName": "Singh", 
        "givenName": "Pramod Kumar", 
        "type": "Person"
      }, 
      {
        "familyName": "Deep", 
        "givenName": "Kusum", 
        "type": "Person"
      }, 
      {
        "familyName": "Pant", 
        "givenName": "Millie", 
        "type": "Person"
      }, 
      {
        "familyName": "Nagar", 
        "givenName": "Atulya K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-81-322-1038-2_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-81-322-1037-5", 
        "978-81-322-1038-2"
      ], 
      "name": "Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)", 
      "type": "Book"
    }, 
    "name": "An Efficient Approach on Rare Association Rule Mining", 
    "pagination": "193-203", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-81-322-1038-2_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e3e469d08c120a5ceaaeb57df9e54168a691a4895e9c339818dcfad151c6113"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009706984"
        ]
      }
    ], 
    "publisher": {
      "location": "India", 
      "name": "Springer India", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-81-322-1038-2_17", 
      "https://app.dimensions.ai/details/publication/pub.1009706984"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000016.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-81-322-1038-2_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-1038-2_17'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-81-322-1038-2_17 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N65b3c8dc233b4c9eb830de320c4d19b6
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description :Traditional association mining techniques are based on support-confidence framework, which enable us to generate frequent rules based on frequent itemsets identified on a market basket dataset with reference to two user defined threshold minsup and minconf. However, the infrequent itemsets referred here as rare itemsets ignored by those techniques often carry useful information in certain real life applications. This paper presents an effective method to generate frequent as well as rare itemsets and also consequently the rules. The effectiveness of the proposed method is established over several synthetic and real life datasets. To address the limitations of support-confidence based frequent and rare itemsets generation technique, a multi-objective rule generation method also has been introduced. The method has been found to perform satisfactory over several real life datasets.
7 schema:editor N4901dc82c34a423fa1e35202aab879ef
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1e55426a23d541bfa483ea30dc8efdfa
12 schema:name An Efficient Approach on Rare Association Rule Mining
13 schema:pagination 193-203
14 schema:productId N1107b56678024bbc86953a13d1c6dc4c
15 N1d6503fec9de4041a757eed8734dd299
16 N4b994aa8f36a4be599a2450b784b1d1a
17 schema:publisher N178269afbb4f45d28483a421b87393ba
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009706984
19 https://doi.org/10.1007/978-81-322-1038-2_17
20 schema:sdDatePublished 2019-04-15T11:16
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N97f688e9ba4a486babeac68ac79a81c5
23 schema:url http://link.springer.com/10.1007/978-81-322-1038-2_17
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N1107b56678024bbc86953a13d1c6dc4c schema:name readcube_id
28 schema:value 2e3e469d08c120a5ceaaeb57df9e54168a691a4895e9c339818dcfad151c6113
29 rdf:type schema:PropertyValue
30 N1231df9ff94741d2a9aaa9cf3b2a3048 rdf:first sg:person.013356517216.81
31 rdf:rest Nf4390d4c421840d6943c9cbd44994d5b
32 N178269afbb4f45d28483a421b87393ba schema:location India
33 schema:name Springer India
34 rdf:type schema:Organisation
35 N1d6503fec9de4041a757eed8734dd299 schema:name dimensions_id
36 schema:value pub.1009706984
37 rdf:type schema:PropertyValue
38 N1e55426a23d541bfa483ea30dc8efdfa schema:isbn 978-81-322-1037-5
39 978-81-322-1038-2
40 schema:name Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)
41 rdf:type schema:Book
42 N27f27633d1344897bc98e38108455773 schema:familyName Singh
43 schema:givenName Pramod Kumar
44 rdf:type schema:Person
45 N3a50a3ae5c34449ca8b64a69e1c7defa schema:familyName Nagar
46 schema:givenName Atulya K.
47 rdf:type schema:Person
48 N3e660640ee8345ad8f5f58c22901e925 rdf:first N8ee0a29cc49d4dba86af7e927c0930ef
49 rdf:rest N531afb7776c34f448af3f5eecbb2984d
50 N4901dc82c34a423fa1e35202aab879ef rdf:first N579f9ffabc87405897bd1cd480d96029
51 rdf:rest N7b4365e0337c4fc8b142e0e2eadd50ef
52 N4b994aa8f36a4be599a2450b784b1d1a schema:name doi
53 schema:value 10.1007/978-81-322-1038-2_17
54 rdf:type schema:PropertyValue
55 N531afb7776c34f448af3f5eecbb2984d rdf:first Nd09dfb68486849159215202068732254
56 rdf:rest Nd348f371faf24ca4b38af501bcf42156
57 N579f9ffabc87405897bd1cd480d96029 schema:familyName Bansal
58 schema:givenName Jagdish Chand
59 rdf:type schema:Person
60 N65b3c8dc233b4c9eb830de320c4d19b6 rdf:first sg:person.01355240052.68
61 rdf:rest N1231df9ff94741d2a9aaa9cf3b2a3048
62 N7b4365e0337c4fc8b142e0e2eadd50ef rdf:first N27f27633d1344897bc98e38108455773
63 rdf:rest N3e660640ee8345ad8f5f58c22901e925
64 N8ee0a29cc49d4dba86af7e927c0930ef schema:familyName Deep
65 schema:givenName Kusum
66 rdf:type schema:Person
67 N97f688e9ba4a486babeac68ac79a81c5 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nd09dfb68486849159215202068732254 schema:familyName Pant
70 schema:givenName Millie
71 rdf:type schema:Person
72 Nd348f371faf24ca4b38af501bcf42156 rdf:first N3a50a3ae5c34449ca8b64a69e1c7defa
73 rdf:rest rdf:nil
74 Nf4390d4c421840d6943c9cbd44994d5b rdf:first sg:person.013101457343.35
75 rdf:rest rdf:nil
76 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
77 schema:name Information and Computing Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information Systems
81 rdf:type schema:DefinedTerm
82 sg:person.013101457343.35 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
83 schema:familyName Bhattacharyya
84 schema:givenName D. K.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35
86 rdf:type schema:Person
87 sg:person.013356517216.81 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
88 schema:familyName Nath
89 schema:givenName B.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356517216.81
91 rdf:type schema:Person
92 sg:person.01355240052.68 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
93 schema:familyName Hoque
94 schema:givenName N.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355240052.68
96 rdf:type schema:Person
97 https://www.grid.ac/institutes/grid.45982.32 schema:alternateName Tezpur University
98 schema:name Tezpur University, Napam, Sonitpur, Assam, 784028, India
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...