Ontology type: schema:Chapter
2012-12-06
AUTHORSJithin Jith , Sayan Gupta , Igor Rychlik
ABSTRACTEstimating the crossing rate statistics of response of offshore structures to wave loadings is essential for their reliability assessment. Wave loadings during heavy storms exhibit non-Gaussian properties, such as, skewed marginal distributions with heavy tails. Such processes can be modeled as Laplace driven moving average (LMA) processes. LMA processes are non-Gaussian, strictly stationary and are characterized by mean, spectrum and two other parameters which can be used to model the skewness and kurtosis of the marginal distribution. Following the Kac-Siegert representation, a second order approximation of the Volterra expansion of the system enables representing the response as a quadratic combination of vector LMA processes. The focus of this study is on estimating the crossing statistics of such a response process. More... »
PAGES697-710
Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM - 2012)
ISBN
978-81-322-0756-6
978-81-322-0757-3
http://scigraph.springernature.com/pub.10.1007/978-81-322-0757-3_45
DOIhttp://dx.doi.org/10.1007/978-81-322-0757-3_45
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1012650644
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Civil Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Applied Mechanics, Indian Institute of Technology Madras, 600036, Chennai, TN, India",
"id": "http://www.grid.ac/institutes/grid.417969.4",
"name": [
"Department of Applied Mechanics, Indian Institute of Technology Madras, 600036, Chennai, TN, India"
],
"type": "Organization"
},
"familyName": "Jith",
"givenName": "Jithin",
"id": "sg:person.014000705656.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000705656.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Applied Mechanics, Indian Institute of Technology Madras, 600036, Chennai, TN, India",
"id": "http://www.grid.ac/institutes/grid.417969.4",
"name": [
"Department of Applied Mechanics, Indian Institute of Technology Madras, 600036, Chennai, TN, India"
],
"type": "Organization"
},
"familyName": "Gupta",
"givenName": "Sayan",
"id": "sg:person.012222014565.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222014565.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mathematical Sciences, Chalmers University of Technology, SE-412 96, G\u00f6teborg, Sweden",
"id": "http://www.grid.ac/institutes/grid.5371.0",
"name": [
"Mathematical Sciences, Chalmers University of Technology, SE-412 96, G\u00f6teborg, Sweden"
],
"type": "Organization"
},
"familyName": "Rychlik",
"givenName": "Igor",
"id": "sg:person.015546022606.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95"
],
"type": "Person"
}
],
"datePublished": "2012-12-06",
"datePublishedReg": "2012-12-06",
"description": "Estimating the crossing rate statistics of response of offshore structures to wave loadings is essential for their reliability assessment. Wave loadings during heavy storms exhibit non-Gaussian properties, such as, skewed marginal distributions with heavy tails. Such processes can be modeled as Laplace driven moving average (LMA) processes. LMA processes are non-Gaussian, strictly stationary and are characterized by mean, spectrum and two other parameters which can be used to model the skewness and kurtosis of the marginal distribution. Following the Kac-Siegert representation, a second order approximation of the Volterra expansion of the system enables representing the response as a quadratic combination of vector LMA processes. The focus of this study is on estimating the crossing statistics of such a response process.",
"editor": [
{
"familyName": "Chakraborty",
"givenName": "Subrata",
"type": "Person"
},
{
"familyName": "Bhattacharya",
"givenName": "Gautam",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-81-322-0757-3_45",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-81-322-0756-6",
"978-81-322-0757-3"
],
"name": "Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM - 2012)",
"type": "Book"
},
"keywords": [
"LMA processes",
"offshore structures",
"reliability assessment",
"loading",
"non-Gaussian properties",
"Kac-Siegert representation",
"second-order response",
"marginal distributions",
"order response",
"rate statistics",
"second-order approximation",
"skewed marginal distributions",
"quadratic combination",
"heavy storms",
"crossing statistics",
"Volterra expansion",
"heavy tails",
"order approximation",
"process",
"average process",
"structure",
"such processes",
"properties",
"distribution",
"response process",
"parameters",
"Laplace",
"statistics",
"system",
"kurtosis",
"approximation",
"storms",
"skewness",
"expansion",
"combination",
"means",
"spectra",
"response",
"representation",
"tail",
"assessment",
"study",
"focus"
],
"name": "Estimating Crossing Rate Statistics of Second Order Response of Structures Subjected to LMA Loadings",
"pagination": "697-710",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1012650644"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-81-322-0757-3_45"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-81-322-0757-3_45",
"https://app.dimensions.ai/details/publication/pub.1012650644"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-08-04T17:15",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_17.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-81-322-0757-3_45"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-0757-3_45'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-0757-3_45'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-0757-3_45'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-81-322-0757-3_45'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
22 PREDICATES
67 URIs
60 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-81-322-0757-3_45 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0905 |
3 | ″ | schema:author | N09dfd90f5a9a48088a9ed9c8609a46c9 |
4 | ″ | schema:datePublished | 2012-12-06 |
5 | ″ | schema:datePublishedReg | 2012-12-06 |
6 | ″ | schema:description | Estimating the crossing rate statistics of response of offshore structures to wave loadings is essential for their reliability assessment. Wave loadings during heavy storms exhibit non-Gaussian properties, such as, skewed marginal distributions with heavy tails. Such processes can be modeled as Laplace driven moving average (LMA) processes. LMA processes are non-Gaussian, strictly stationary and are characterized by mean, spectrum and two other parameters which can be used to model the skewness and kurtosis of the marginal distribution. Following the Kac-Siegert representation, a second order approximation of the Volterra expansion of the system enables representing the response as a quadratic combination of vector LMA processes. The focus of this study is on estimating the crossing statistics of such a response process. |
7 | ″ | schema:editor | N5c0fd6c077614e3195cb1ad3ef82761a |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N627fc326556b4f19b82a3346bd70cd5e |
11 | ″ | schema:keywords | Kac-Siegert representation |
12 | ″ | ″ | LMA processes |
13 | ″ | ″ | Laplace |
14 | ″ | ″ | Volterra expansion |
15 | ″ | ″ | approximation |
16 | ″ | ″ | assessment |
17 | ″ | ″ | average process |
18 | ″ | ″ | combination |
19 | ″ | ″ | crossing statistics |
20 | ″ | ″ | distribution |
21 | ″ | ″ | expansion |
22 | ″ | ″ | focus |
23 | ″ | ″ | heavy storms |
24 | ″ | ″ | heavy tails |
25 | ″ | ″ | kurtosis |
26 | ″ | ″ | loading |
27 | ″ | ″ | marginal distributions |
28 | ″ | ″ | means |
29 | ″ | ″ | non-Gaussian properties |
30 | ″ | ″ | offshore structures |
31 | ″ | ″ | order approximation |
32 | ″ | ″ | order response |
33 | ″ | ″ | parameters |
34 | ″ | ″ | process |
35 | ″ | ″ | properties |
36 | ″ | ″ | quadratic combination |
37 | ″ | ″ | rate statistics |
38 | ″ | ″ | reliability assessment |
39 | ″ | ″ | representation |
40 | ″ | ″ | response |
41 | ″ | ″ | response process |
42 | ″ | ″ | second-order approximation |
43 | ″ | ″ | second-order response |
44 | ″ | ″ | skewed marginal distributions |
45 | ″ | ″ | skewness |
46 | ″ | ″ | spectra |
47 | ″ | ″ | statistics |
48 | ″ | ″ | storms |
49 | ″ | ″ | structure |
50 | ″ | ″ | study |
51 | ″ | ″ | such processes |
52 | ″ | ″ | system |
53 | ″ | ″ | tail |
54 | ″ | schema:name | Estimating Crossing Rate Statistics of Second Order Response of Structures Subjected to LMA Loadings |
55 | ″ | schema:pagination | 697-710 |
56 | ″ | schema:productId | N1b1895c86fbf49cf9eefd4cfac66bf87 |
57 | ″ | ″ | Nd038f22c02204a349402ab6a40e6e500 |
58 | ″ | schema:publisher | N56baa8b443a345a0a99aebcf791ecc63 |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012650644 |
60 | ″ | ″ | https://doi.org/10.1007/978-81-322-0757-3_45 |
61 | ″ | schema:sdDatePublished | 2022-08-04T17:15 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | Nc4915a093bb34a75a3701f73fba8e541 |
64 | ″ | schema:url | https://doi.org/10.1007/978-81-322-0757-3_45 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | chapters |
67 | ″ | rdf:type | schema:Chapter |
68 | N09dfd90f5a9a48088a9ed9c8609a46c9 | rdf:first | sg:person.014000705656.10 |
69 | ″ | rdf:rest | Na8dee04ba6474b7b83fcfba326ab2aa1 |
70 | N1b1895c86fbf49cf9eefd4cfac66bf87 | schema:name | doi |
71 | ″ | schema:value | 10.1007/978-81-322-0757-3_45 |
72 | ″ | rdf:type | schema:PropertyValue |
73 | N56baa8b443a345a0a99aebcf791ecc63 | schema:name | Springer Nature |
74 | ″ | rdf:type | schema:Organisation |
75 | N5c0fd6c077614e3195cb1ad3ef82761a | rdf:first | Ne860283005ce4fb2b9c1863099d7e557 |
76 | ″ | rdf:rest | N8446be99ebc54fc59afd27ff8a0ad4d1 |
77 | N627fc326556b4f19b82a3346bd70cd5e | schema:isbn | 978-81-322-0756-6 |
78 | ″ | ″ | 978-81-322-0757-3 |
79 | ″ | schema:name | Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM - 2012) |
80 | ″ | rdf:type | schema:Book |
81 | N8446be99ebc54fc59afd27ff8a0ad4d1 | rdf:first | Nc9f7493fb1164609974531c8d2da8897 |
82 | ″ | rdf:rest | rdf:nil |
83 | Na8dee04ba6474b7b83fcfba326ab2aa1 | rdf:first | sg:person.012222014565.29 |
84 | ″ | rdf:rest | Nad6c69fdcad0494cba3a388550e1cdd4 |
85 | Nad6c69fdcad0494cba3a388550e1cdd4 | rdf:first | sg:person.015546022606.95 |
86 | ″ | rdf:rest | rdf:nil |
87 | Nc4915a093bb34a75a3701f73fba8e541 | schema:name | Springer Nature - SN SciGraph project |
88 | ″ | rdf:type | schema:Organization |
89 | Nc9f7493fb1164609974531c8d2da8897 | schema:familyName | Bhattacharya |
90 | ″ | schema:givenName | Gautam |
91 | ″ | rdf:type | schema:Person |
92 | Nd038f22c02204a349402ab6a40e6e500 | schema:name | dimensions_id |
93 | ″ | schema:value | pub.1012650644 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | Ne860283005ce4fb2b9c1863099d7e557 | schema:familyName | Chakraborty |
96 | ″ | schema:givenName | Subrata |
97 | ″ | rdf:type | schema:Person |
98 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Engineering |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | anzsrc-for:0905 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Civil Engineering |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | sg:person.012222014565.29 | schema:affiliation | grid-institutes:grid.417969.4 |
105 | ″ | schema:familyName | Gupta |
106 | ″ | schema:givenName | Sayan |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222014565.29 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.014000705656.10 | schema:affiliation | grid-institutes:grid.417969.4 |
110 | ″ | schema:familyName | Jith |
111 | ″ | schema:givenName | Jithin |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000705656.10 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.015546022606.95 | schema:affiliation | grid-institutes:grid.5371.0 |
115 | ″ | schema:familyName | Rychlik |
116 | ″ | schema:givenName | Igor |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015546022606.95 |
118 | ″ | rdf:type | schema:Person |
119 | grid-institutes:grid.417969.4 | schema:alternateName | Department of Applied Mechanics, Indian Institute of Technology Madras, 600036, Chennai, TN, India |
120 | ″ | schema:name | Department of Applied Mechanics, Indian Institute of Technology Madras, 600036, Chennai, TN, India |
121 | ″ | rdf:type | schema:Organization |
122 | grid-institutes:grid.5371.0 | schema:alternateName | Mathematical Sciences, Chalmers University of Technology, SE-412 96, Göteborg, Sweden |
123 | ″ | schema:name | Mathematical Sciences, Chalmers University of Technology, SE-412 96, Göteborg, Sweden |
124 | ″ | rdf:type | schema:Organization |