Techniques for Realistic Facial Modeling and Animation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

Demetri Terzopoulos , Keith Waters

ABSTRACT

This paper describes a methodology for constructing and animating realistic models of human faces. We present three physically-based techniques. The first, an adaptive meshing method, is able to create nonuniform facial meshes from high resolution data acquired by scanning a subject with a laser range sensor. Starting with a nonuniform mesh, the second method constructs a realistic model of the subject’s face and head. The face model includes synthetic facial tissue and muscle actuators based on anatomical and biomechanical considerations. From video sequences of a subject performing expressive articulations, the third method estimates facial muscle contractions and inputs these as dynamic control parameters to the model in order to yield realistic, performance-controlled facial animation. More... »

PAGES

59-74

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-4-431-66890-9_5

DOI

http://dx.doi.org/10.1007/978-4-431-66890-9_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020347856


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Toronto, 10 King\u2019s College Road, M5S 1A4, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science, University of Toronto, 10 King\u2019s College Road, M5S 1A4, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Schlumberger Laboratory for Computer Science, PO Box 200015, 78720, Austin, TX, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Schlumberger Laboratory for Computer Science, PO Box 200015, 78720, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waters", 
        "givenName": "Keith", 
        "id": "sg:person.010675054061.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010675054061.19"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "This paper describes a methodology for constructing and animating realistic models of human faces. We present three physically-based techniques. The first, an adaptive meshing method, is able to create nonuniform facial meshes from high resolution data acquired by scanning a subject with a laser range sensor. Starting with a nonuniform mesh, the second method constructs a realistic model of the subject\u2019s face and head. The face model includes synthetic facial tissue and muscle actuators based on anatomical and biomechanical considerations. From video sequences of a subject performing expressive articulations, the third method estimates facial muscle contractions and inputs these as dynamic control parameters to the model in order to yield realistic, performance-controlled facial animation.", 
    "editor": [
      {
        "familyName": "Thalmann", 
        "givenName": "Nadia Magnenat", 
        "type": "Person"
      }, 
      {
        "familyName": "Thalmann", 
        "givenName": "Daniel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-4-431-66890-9_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-4-431-66892-3", 
        "978-4-431-66890-9"
      ], 
      "name": "Computer Animation \u201991", 
      "type": "Book"
    }, 
    "keywords": [
      "Realistic Facial Modeling", 
      "adaptive meshing method", 
      "meshing method", 
      "laser range sensor", 
      "muscle actuators", 
      "high resolution data", 
      "dynamic control parameters", 
      "realistic model", 
      "range sensor", 
      "control parameters", 
      "biomechanical considerations", 
      "resolution data", 
      "mesh", 
      "nonuniform meshes", 
      "actuators", 
      "sensors", 
      "second method", 
      "facial mesh", 
      "expressive articulations", 
      "third method", 
      "model", 
      "method", 
      "facial modeling", 
      "technique", 
      "modeling", 
      "facial tissues", 
      "parameters", 
      "methodology", 
      "order", 
      "facial muscle contractions", 
      "input", 
      "consideration", 
      "subject's face", 
      "face", 
      "face model", 
      "animation", 
      "data", 
      "head", 
      "facial animation", 
      "video sequences", 
      "contraction", 
      "tissue", 
      "sequence", 
      "articulation", 
      "human face", 
      "muscle contraction", 
      "subjects", 
      "paper", 
      "synthetic facial tissue", 
      "performance-controlled facial animation"
    ], 
    "name": "Techniques for Realistic Facial Modeling and Animation", 
    "pagination": "59-74", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020347856"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-4-431-66890-9_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-4-431-66890-9_5", 
      "https://app.dimensions.ai/details/publication/pub.1020347856"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_48.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-4-431-66890-9_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-66890-9_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-66890-9_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-66890-9_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-66890-9_5'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-4-431-66890-9_5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N53cd9a12fca547cc8efac43832842b33
4 schema:datePublished 1991
5 schema:datePublishedReg 1991-01-01
6 schema:description This paper describes a methodology for constructing and animating realistic models of human faces. We present three physically-based techniques. The first, an adaptive meshing method, is able to create nonuniform facial meshes from high resolution data acquired by scanning a subject with a laser range sensor. Starting with a nonuniform mesh, the second method constructs a realistic model of the subject’s face and head. The face model includes synthetic facial tissue and muscle actuators based on anatomical and biomechanical considerations. From video sequences of a subject performing expressive articulations, the third method estimates facial muscle contractions and inputs these as dynamic control parameters to the model in order to yield realistic, performance-controlled facial animation.
7 schema:editor N9cf489b07fa547a584a53f71cf4b9253
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N392cdd538f114b49983d5a40341e47a5
12 schema:keywords Realistic Facial Modeling
13 actuators
14 adaptive meshing method
15 animation
16 articulation
17 biomechanical considerations
18 consideration
19 contraction
20 control parameters
21 data
22 dynamic control parameters
23 expressive articulations
24 face
25 face model
26 facial animation
27 facial mesh
28 facial modeling
29 facial muscle contractions
30 facial tissues
31 head
32 high resolution data
33 human face
34 input
35 laser range sensor
36 mesh
37 meshing method
38 method
39 methodology
40 model
41 modeling
42 muscle actuators
43 muscle contraction
44 nonuniform meshes
45 order
46 paper
47 parameters
48 performance-controlled facial animation
49 range sensor
50 realistic model
51 resolution data
52 second method
53 sensors
54 sequence
55 subject's face
56 subjects
57 synthetic facial tissue
58 technique
59 third method
60 tissue
61 video sequences
62 schema:name Techniques for Realistic Facial Modeling and Animation
63 schema:pagination 59-74
64 schema:productId N04bf3efea12042938668cea6d1ce6db3
65 N3028154879254802b2d78fd6eca0e9d5
66 schema:publisher N1071ca1d4b574aa8815538b45e73ca89
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020347856
68 https://doi.org/10.1007/978-4-431-66890-9_5
69 schema:sdDatePublished 2022-01-01T19:26
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nfab27f8daa2841f7868e88a116e033c1
72 schema:url https://doi.org/10.1007/978-4-431-66890-9_5
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N04bf3efea12042938668cea6d1ce6db3 schema:name dimensions_id
77 schema:value pub.1020347856
78 rdf:type schema:PropertyValue
79 N1071ca1d4b574aa8815538b45e73ca89 schema:name Springer Nature
80 rdf:type schema:Organisation
81 N3028154879254802b2d78fd6eca0e9d5 schema:name doi
82 schema:value 10.1007/978-4-431-66890-9_5
83 rdf:type schema:PropertyValue
84 N35320ce942ce424999c052fb2f088a64 rdf:first N69830f13bd8c41e9a2834fa2c2761988
85 rdf:rest rdf:nil
86 N392cdd538f114b49983d5a40341e47a5 schema:isbn 978-4-431-66890-9
87 978-4-431-66892-3
88 schema:name Computer Animation ’91
89 rdf:type schema:Book
90 N53cd9a12fca547cc8efac43832842b33 rdf:first sg:person.016347323445.35
91 rdf:rest N8ce2b1783220411d8543a79895aabd79
92 N6210a4671a35422ab2a3ec3c5bc9d364 schema:familyName Thalmann
93 schema:givenName Nadia Magnenat
94 rdf:type schema:Person
95 N69830f13bd8c41e9a2834fa2c2761988 schema:familyName Thalmann
96 schema:givenName Daniel
97 rdf:type schema:Person
98 N8ce2b1783220411d8543a79895aabd79 rdf:first sg:person.010675054061.19
99 rdf:rest rdf:nil
100 N9cf489b07fa547a584a53f71cf4b9253 rdf:first N6210a4671a35422ab2a3ec3c5bc9d364
101 rdf:rest N35320ce942ce424999c052fb2f088a64
102 Nfab27f8daa2841f7868e88a116e033c1 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:person.010675054061.19 schema:affiliation grid-institutes:None
111 schema:familyName Waters
112 schema:givenName Keith
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010675054061.19
114 rdf:type schema:Person
115 sg:person.016347323445.35 schema:affiliation grid-institutes:grid.17063.33
116 schema:familyName Terzopoulos
117 schema:givenName Demetri
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
119 rdf:type schema:Person
120 grid-institutes:None schema:alternateName Schlumberger Laboratory for Computer Science, PO Box 200015, 78720, Austin, TX, USA
121 schema:name Schlumberger Laboratory for Computer Science, PO Box 200015, 78720, Austin, TX, USA
122 rdf:type schema:Organization
123 grid-institutes:grid.17063.33 schema:alternateName Department of Computer Science, University of Toronto, 10 King’s College Road, M5S 1A4, Toronto, ON, Canada
124 schema:name Department of Computer Science, University of Toronto, 10 King’s College Road, M5S 1A4, Toronto, ON, Canada
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...