A method for classifying unaligned biological sequences View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

B. Tallur , J. Nicolas

ABSTRACT

It is needless to emphasize the importance of classification of protein sequences in molecular biology. Various methods of classification are currently being used by biologists (Landès et aí.1992) but most of them require the sequences to be prealigned — and thus to be of equal length — using one of the several multiple alignment algorithms available, so as to make the site-by-site comparison of sequences possible. Two LLA-based approaches for classifying prealigned sequences were already proposed (Lerman et al. (1994a)) whose results compared favourably with most currently used methods. The first approach made use of the “preordonnance” coding and the second one, the idea of “significant windows”. The new directions of research leading to a clustering method free from this somewhat strong constraint were also suggested by the authors. The present paper gives an account of the recent developments of our research, consisting of a new method that gets round the sequence comparison problem faced with while dealing with unaligned sequences, thanks to the “significant windows” approach. More... »

PAGES

758-765

Book

TITLE

Data Science, Classification, and Related Methods

ISBN

978-4-431-70208-5
978-4-431-65950-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83

DOI

http://dx.doi.org/10.1007/978-4-431-65950-1_83

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011524065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tallur", 
        "givenName": "B.", 
        "id": "sg:person.07452354621.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452354621.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolas", 
        "givenName": "J.", 
        "id": "sg:person.01217503310.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217503310.87"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "It is needless to emphasize the importance of classification of protein sequences in molecular biology. Various methods of classification are currently being used by biologists (Land\u00e8s et a\u00ed.1992) but most of them require the sequences to be prealigned \u2014 and thus to be of equal length \u2014 using one of the several multiple alignment algorithms available, so as to make the site-by-site comparison of sequences possible. Two LLA-based approaches for classifying prealigned sequences were already proposed (Lerman et al. (1994a)) whose results compared favourably with most currently used methods. The first approach made use of the \u201cpreordonnance\u201d coding and the second one, the idea of \u201csignificant windows\u201d. The new directions of research leading to a clustering method free from this somewhat strong constraint were also suggested by the authors. The present paper gives an account of the recent developments of our research, consisting of a new method that gets round the sequence comparison problem faced with while dealing with unaligned sequences, thanks to the \u201csignificant windows\u201d approach.", 
    "editor": [
      {
        "familyName": "Hayashi", 
        "givenName": "Chikio", 
        "type": "Person"
      }, 
      {
        "familyName": "Yajima", 
        "givenName": "Keiji", 
        "type": "Person"
      }, 
      {
        "familyName": "Bock", 
        "givenName": "Hans-Hermann", 
        "type": "Person"
      }, 
      {
        "familyName": "Ohsumi", 
        "givenName": "Noboru", 
        "type": "Person"
      }, 
      {
        "familyName": "Tanaka", 
        "givenName": "Yutaka", 
        "type": "Person"
      }, 
      {
        "familyName": "Baba", 
        "givenName": "Yasumasa", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-4-431-65950-1_83", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-4-431-70208-5", 
        "978-4-431-65950-1"
      ], 
      "name": "Data Science, Classification, and Related Methods", 
      "type": "Book"
    }, 
    "keywords": [
      "sequence comparison problem", 
      "multiple alignment algorithms", 
      "unaligned biological sequences", 
      "alignment algorithm", 
      "biological sequences", 
      "importance of classification", 
      "clustering method", 
      "method of classification", 
      "unaligned sequences", 
      "comparison problem", 
      "first approach", 
      "classification", 
      "second one", 
      "coding", 
      "algorithm", 
      "new method", 
      "protein sequences", 
      "method", 
      "constraints", 
      "new directions", 
      "window", 
      "recent developments", 
      "thanks", 
      "research", 
      "sequence", 
      "idea", 
      "biologists", 
      "strong constraints", 
      "one", 
      "use", 
      "present paper", 
      "site comparisons", 
      "development", 
      "results", 
      "direction", 
      "molecular biology", 
      "authors", 
      "account", 
      "comparison", 
      "importance", 
      "biology", 
      "LLA", 
      "significant window", 
      "sites", 
      "approach", 
      "paper", 
      "problem", 
      "prealigned sequences", 
      "preordonnance"
    ], 
    "name": "A method for classifying unaligned biological sequences", 
    "pagination": "758-765", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011524065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-4-431-65950-1_83"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-4-431-65950-1_83", 
      "https://app.dimensions.ai/details/publication/pub.1011524065"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_134.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-4-431-65950-1_83"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      75 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-4-431-65950-1_83 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N8cdeea0a3dc647eca07f78db47481392
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description It is needless to emphasize the importance of classification of protein sequences in molecular biology. Various methods of classification are currently being used by biologists (Landès et aí.1992) but most of them require the sequences to be prealigned — and thus to be of equal length — using one of the several multiple alignment algorithms available, so as to make the site-by-site comparison of sequences possible. Two LLA-based approaches for classifying prealigned sequences were already proposed (Lerman et al. (1994a)) whose results compared favourably with most currently used methods. The first approach made use of the “preordonnance” coding and the second one, the idea of “significant windows”. The new directions of research leading to a clustering method free from this somewhat strong constraint were also suggested by the authors. The present paper gives an account of the recent developments of our research, consisting of a new method that gets round the sequence comparison problem faced with while dealing with unaligned sequences, thanks to the “significant windows” approach.
7 schema:editor N150485b6f078445eace19c50be788056
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nef30b2ce6fe34754af1d331c9b6b1f52
12 schema:keywords LLA
13 account
14 algorithm
15 alignment algorithm
16 approach
17 authors
18 biological sequences
19 biologists
20 biology
21 classification
22 clustering method
23 coding
24 comparison
25 comparison problem
26 constraints
27 development
28 direction
29 first approach
30 idea
31 importance
32 importance of classification
33 method
34 method of classification
35 molecular biology
36 multiple alignment algorithms
37 new directions
38 new method
39 one
40 paper
41 prealigned sequences
42 preordonnance
43 present paper
44 problem
45 protein sequences
46 recent developments
47 research
48 results
49 second one
50 sequence
51 sequence comparison problem
52 significant window
53 site comparisons
54 sites
55 strong constraints
56 thanks
57 unaligned biological sequences
58 unaligned sequences
59 use
60 window
61 schema:name A method for classifying unaligned biological sequences
62 schema:pagination 758-765
63 schema:productId N0b2540c959684ad2b3404f0bbf0a7d57
64 N270a6ba320b245cab4e2fb50b991e74b
65 schema:publisher N301b4dc7dd7840e091fb3582f60ba192
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011524065
67 https://doi.org/10.1007/978-4-431-65950-1_83
68 schema:sdDatePublished 2022-01-01T19:08
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N29f954a76de146a4addd2232f3d1c1d2
71 schema:url https://doi.org/10.1007/978-4-431-65950-1_83
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N012331da5fda4906960ecd41e7404a80 schema:familyName Tanaka
76 schema:givenName Yutaka
77 rdf:type schema:Person
78 N0b2540c959684ad2b3404f0bbf0a7d57 schema:name dimensions_id
79 schema:value pub.1011524065
80 rdf:type schema:PropertyValue
81 N1266602657a14144b69ba709f6947a61 schema:familyName Baba
82 schema:givenName Yasumasa
83 rdf:type schema:Person
84 N150485b6f078445eace19c50be788056 rdf:first Nd8da5ea378c341928ec35644c609b428
85 rdf:rest Na76c443467ee48d7aa2489565e6bf778
86 N229b379aa3b24b60a313897c7b6ea068 schema:familyName Bock
87 schema:givenName Hans-Hermann
88 rdf:type schema:Person
89 N270a6ba320b245cab4e2fb50b991e74b schema:name doi
90 schema:value 10.1007/978-4-431-65950-1_83
91 rdf:type schema:PropertyValue
92 N29f954a76de146a4addd2232f3d1c1d2 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N2a08eb96b8334b9ea298feff79088c1e rdf:first Nbaf8979c525b4c69a8a477cea3e20070
95 rdf:rest N8c51c32a5ac1497098dd7fafd6da72a6
96 N301b4dc7dd7840e091fb3582f60ba192 schema:name Springer Nature
97 rdf:type schema:Organisation
98 N30964e78b54248edbca58c271a6a9dad schema:familyName Yajima
99 schema:givenName Keiji
100 rdf:type schema:Person
101 N5410e33e6b9b422ab441fffc7c89a265 rdf:first sg:person.01217503310.87
102 rdf:rest rdf:nil
103 N8286e710a31d4a3ebb78b71d67ae22f7 rdf:first N1266602657a14144b69ba709f6947a61
104 rdf:rest rdf:nil
105 N8c51c32a5ac1497098dd7fafd6da72a6 rdf:first N012331da5fda4906960ecd41e7404a80
106 rdf:rest N8286e710a31d4a3ebb78b71d67ae22f7
107 N8cdeea0a3dc647eca07f78db47481392 rdf:first sg:person.07452354621.08
108 rdf:rest N5410e33e6b9b422ab441fffc7c89a265
109 Na76c443467ee48d7aa2489565e6bf778 rdf:first N30964e78b54248edbca58c271a6a9dad
110 rdf:rest Nd89ddac79e3c4a9188c74b7c4dfa21c6
111 Nbaf8979c525b4c69a8a477cea3e20070 schema:familyName Ohsumi
112 schema:givenName Noboru
113 rdf:type schema:Person
114 Nd89ddac79e3c4a9188c74b7c4dfa21c6 rdf:first N229b379aa3b24b60a313897c7b6ea068
115 rdf:rest N2a08eb96b8334b9ea298feff79088c1e
116 Nd8da5ea378c341928ec35644c609b428 schema:familyName Hayashi
117 schema:givenName Chikio
118 rdf:type schema:Person
119 Nef30b2ce6fe34754af1d331c9b6b1f52 schema:isbn 978-4-431-65950-1
120 978-4-431-70208-5
121 schema:name Data Science, Classification, and Related Methods
122 rdf:type schema:Book
123 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
124 schema:name Mathematical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
127 schema:name Statistics
128 rdf:type schema:DefinedTerm
129 sg:person.01217503310.87 schema:affiliation grid-institutes:grid.420225.3
130 schema:familyName Nicolas
131 schema:givenName J.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217503310.87
133 rdf:type schema:Person
134 sg:person.07452354621.08 schema:affiliation grid-institutes:grid.420225.3
135 schema:familyName Tallur
136 schema:givenName B.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452354621.08
138 rdf:type schema:Person
139 grid-institutes:grid.420225.3 schema:alternateName Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France
140 schema:name Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...