A method for classifying unaligned biological sequences View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

B. Tallur , J. Nicolas

ABSTRACT

It is needless to emphasize the importance of classification of protein sequences in molecular biology. Various methods of classification are currently being used by biologists (Landès et aí.1992) but most of them require the sequences to be prealigned — and thus to be of equal length — using one of the several multiple alignment algorithms available, so as to make the site-by-site comparison of sequences possible. Two LLA-based approaches for classifying prealigned sequences were already proposed (Lerman et al. (1994a)) whose results compared favourably with most currently used methods. The first approach made use of the “preordonnance” coding and the second one, the idea of “significant windows”. The new directions of research leading to a clustering method free from this somewhat strong constraint were also suggested by the authors. The present paper gives an account of the recent developments of our research, consisting of a new method that gets round the sequence comparison problem faced with while dealing with unaligned sequences, thanks to the “significant windows” approach. More... »

PAGES

758-765

Book

TITLE

Data Science, Classification, and Related Methods

ISBN

978-4-431-70208-5
978-4-431-65950-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83

DOI

http://dx.doi.org/10.1007/978-4-431-65950-1_83

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011524065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tallur", 
        "givenName": "B.", 
        "id": "sg:person.07452354621.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452354621.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolas", 
        "givenName": "J.", 
        "id": "sg:person.01143715001.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143715001.20"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "It is needless to emphasize the importance of classification of protein sequences in molecular biology. Various methods of classification are currently being used by biologists (Land\u00e8s et a\u00ed.1992) but most of them require the sequences to be prealigned \u2014 and thus to be of equal length \u2014 using one of the several multiple alignment algorithms available, so as to make the site-by-site comparison of sequences possible. Two LLA-based approaches for classifying prealigned sequences were already proposed (Lerman et al. (1994a)) whose results compared favourably with most currently used methods. The first approach made use of the \u201cpreordonnance\u201d coding and the second one, the idea of \u201csignificant windows\u201d. The new directions of research leading to a clustering method free from this somewhat strong constraint were also suggested by the authors. The present paper gives an account of the recent developments of our research, consisting of a new method that gets round the sequence comparison problem faced with while dealing with unaligned sequences, thanks to the \u201csignificant windows\u201d approach.", 
    "editor": [
      {
        "familyName": "Hayashi", 
        "givenName": "Chikio", 
        "type": "Person"
      }, 
      {
        "familyName": "Yajima", 
        "givenName": "Keiji", 
        "type": "Person"
      }, 
      {
        "familyName": "Bock", 
        "givenName": "Hans-Hermann", 
        "type": "Person"
      }, 
      {
        "familyName": "Ohsumi", 
        "givenName": "Noboru", 
        "type": "Person"
      }, 
      {
        "familyName": "Tanaka", 
        "givenName": "Yutaka", 
        "type": "Person"
      }, 
      {
        "familyName": "Baba", 
        "givenName": "Yasumasa", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-4-431-65950-1_83", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-4-431-70208-5", 
        "978-4-431-65950-1"
      ], 
      "name": "Data Science, Classification, and Related Methods", 
      "type": "Book"
    }, 
    "keywords": [
      "multiple alignment algorithms", 
      "sequence comparison problem", 
      "unaligned biological sequences", 
      "alignment algorithm", 
      "clustering method", 
      "biological sequences", 
      "method of classification", 
      "unaligned sequences", 
      "importance of classification", 
      "comparison problem", 
      "first approach", 
      "classification", 
      "second one", 
      "algorithm", 
      "coding", 
      "new method", 
      "method", 
      "constraints", 
      "protein sequences", 
      "window", 
      "new directions", 
      "thanks", 
      "sequence", 
      "idea", 
      "recent developments", 
      "biologists", 
      "research", 
      "strong constraints", 
      "one", 
      "use", 
      "present paper", 
      "results", 
      "direction", 
      "account", 
      "development", 
      "molecular biology", 
      "authors", 
      "comparison", 
      "site comparisons", 
      "importance", 
      "LLA", 
      "biology", 
      "sites", 
      "approach", 
      "paper", 
      "problem", 
      "significant window", 
      "prealigned sequences", 
      "preordonnance"
    ], 
    "name": "A method for classifying unaligned biological sequences", 
    "pagination": "758-765", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011524065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-4-431-65950-1_83"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-4-431-65950-1_83", 
      "https://app.dimensions.ai/details/publication/pub.1011524065"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_217.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-4-431-65950-1_83"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_83'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      75 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-4-431-65950-1_83 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N9700552915944391b13eb6b753d5686f
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description It is needless to emphasize the importance of classification of protein sequences in molecular biology. Various methods of classification are currently being used by biologists (Landès et aí.1992) but most of them require the sequences to be prealigned — and thus to be of equal length — using one of the several multiple alignment algorithms available, so as to make the site-by-site comparison of sequences possible. Two LLA-based approaches for classifying prealigned sequences were already proposed (Lerman et al. (1994a)) whose results compared favourably with most currently used methods. The first approach made use of the “preordonnance” coding and the second one, the idea of “significant windows”. The new directions of research leading to a clustering method free from this somewhat strong constraint were also suggested by the authors. The present paper gives an account of the recent developments of our research, consisting of a new method that gets round the sequence comparison problem faced with while dealing with unaligned sequences, thanks to the “significant windows” approach.
7 schema:editor Nf686736996334da3ab33b238621307d4
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N96b41b0a24bf4b4aab533e6e82a60b17
12 schema:keywords LLA
13 account
14 algorithm
15 alignment algorithm
16 approach
17 authors
18 biological sequences
19 biologists
20 biology
21 classification
22 clustering method
23 coding
24 comparison
25 comparison problem
26 constraints
27 development
28 direction
29 first approach
30 idea
31 importance
32 importance of classification
33 method
34 method of classification
35 molecular biology
36 multiple alignment algorithms
37 new directions
38 new method
39 one
40 paper
41 prealigned sequences
42 preordonnance
43 present paper
44 problem
45 protein sequences
46 recent developments
47 research
48 results
49 second one
50 sequence
51 sequence comparison problem
52 significant window
53 site comparisons
54 sites
55 strong constraints
56 thanks
57 unaligned biological sequences
58 unaligned sequences
59 use
60 window
61 schema:name A method for classifying unaligned biological sequences
62 schema:pagination 758-765
63 schema:productId N9e3f5d814a1e43bd8c03c4d7c04a6c9a
64 Ne012cb083f3645ca931eeee296caf375
65 schema:publisher Na13fef0151fd44adafc0c49ea0980b8f
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011524065
67 https://doi.org/10.1007/978-4-431-65950-1_83
68 schema:sdDatePublished 2021-12-01T20:00
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Na9ea5f6cb4734de5854a66fcd26a4c05
71 schema:url https://doi.org/10.1007/978-4-431-65950-1_83
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N04f4262a7b404c7a93f6833b026e1c54 rdf:first N59b196aa6c6146d4ab2f3959737bc61f
76 rdf:rest N3d30c47281ba4de19698b4cc9f2a5a56
77 N2412faf708574313babb545bcb0a173e rdf:first Naad82eaf06484c2aa7c2fb3c09cbf2b7
78 rdf:rest Nbf643db89d53457ab89c2c306744ac82
79 N3d30c47281ba4de19698b4cc9f2a5a56 rdf:first Nd716768e424b4eaa9c6ce752c10909c9
80 rdf:rest N2412faf708574313babb545bcb0a173e
81 N59b196aa6c6146d4ab2f3959737bc61f schema:familyName Bock
82 schema:givenName Hans-Hermann
83 rdf:type schema:Person
84 N61f66ec5a1d54b87be9716a777aa342d schema:familyName Hayashi
85 schema:givenName Chikio
86 rdf:type schema:Person
87 N853cada69bfb4b4b9566272770ed34fe rdf:first Ne938dae095214a5f8cdf4aa687947e84
88 rdf:rest N04f4262a7b404c7a93f6833b026e1c54
89 N913e377f3aff417c8d207a4fcc85c548 rdf:first sg:person.01143715001.20
90 rdf:rest rdf:nil
91 N96b41b0a24bf4b4aab533e6e82a60b17 schema:isbn 978-4-431-65950-1
92 978-4-431-70208-5
93 schema:name Data Science, Classification, and Related Methods
94 rdf:type schema:Book
95 N9700552915944391b13eb6b753d5686f rdf:first sg:person.07452354621.08
96 rdf:rest N913e377f3aff417c8d207a4fcc85c548
97 N9e3f5d814a1e43bd8c03c4d7c04a6c9a schema:name dimensions_id
98 schema:value pub.1011524065
99 rdf:type schema:PropertyValue
100 Na13fef0151fd44adafc0c49ea0980b8f schema:name Springer Nature
101 rdf:type schema:Organisation
102 Na9ea5f6cb4734de5854a66fcd26a4c05 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Naad82eaf06484c2aa7c2fb3c09cbf2b7 schema:familyName Tanaka
105 schema:givenName Yutaka
106 rdf:type schema:Person
107 Nbf643db89d53457ab89c2c306744ac82 rdf:first Nf04b924f4c474760ab83fc7e8a07a333
108 rdf:rest rdf:nil
109 Nd716768e424b4eaa9c6ce752c10909c9 schema:familyName Ohsumi
110 schema:givenName Noboru
111 rdf:type schema:Person
112 Ne012cb083f3645ca931eeee296caf375 schema:name doi
113 schema:value 10.1007/978-4-431-65950-1_83
114 rdf:type schema:PropertyValue
115 Ne938dae095214a5f8cdf4aa687947e84 schema:familyName Yajima
116 schema:givenName Keiji
117 rdf:type schema:Person
118 Nf04b924f4c474760ab83fc7e8a07a333 schema:familyName Baba
119 schema:givenName Yasumasa
120 rdf:type schema:Person
121 Nf686736996334da3ab33b238621307d4 rdf:first N61f66ec5a1d54b87be9716a777aa342d
122 rdf:rest N853cada69bfb4b4b9566272770ed34fe
123 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
124 schema:name Mathematical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
127 schema:name Statistics
128 rdf:type schema:DefinedTerm
129 sg:person.01143715001.20 schema:affiliation grid-institutes:grid.420225.3
130 schema:familyName Nicolas
131 schema:givenName J.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143715001.20
133 rdf:type schema:Person
134 sg:person.07452354621.08 schema:affiliation grid-institutes:grid.420225.3
135 schema:familyName Tallur
136 schema:givenName B.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452354621.08
138 rdf:type schema:Person
139 grid-institutes:grid.420225.3 schema:alternateName Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France
140 schema:name Campus Universitaire de Beaulieu, IRISA, Avenue de Gen. Leclerc, 35042, Rennes cedex, France
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...