Application of Classification and Related Methods to SQC Renaissance in Toyota Motor View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

Kakuro Amasaka

ABSTRACT

To. capture the true nature of making products, and in the belief that the best personnel developing is practical research to raise the technological level, we have been engaged in SQC promotion activities under the banner “SQC Renaissance”. The aim of SQC promoted by Toyota is to take up the challenge of solving vital technological. assignments, and to conduct superior QCDS research by employing SQC in a scientific, recursive manner. To this end, we must build Toyota’s technical methods for conducting scientific SQC as a key technology in all stages of the management process, from product planning and development through to manufacturing and sales. Especially, multivariate analysis resolves complex entanglements of cause and effect relationships for both quantitative and qualitative data. A part of application examples are reported below, focusing on the cluster analysis as a representative example. More... »

PAGES

684-695

References to SciGraph publications

  • 1997. Factor analysis for selected observations in STOCHASTIC MODELLING IN INNOVATIVE MANUFACTURING
  • 1997. Latent structures of goodness-of-invention in STOCHASTIC MODELLING IN INNOVATIVE MANUFACTURING
  • 1997. A Construction of SQC Intelligence System for Quick Registration and Retrieval Library — A Visualized SQC Report for Technical Wealth— in STOCHASTIC MODELLING IN INNOVATIVE MANUFACTURING
  • Book

    TITLE

    Data Science, Classification, and Related Methods

    ISBN

    978-4-431-70208-5
    978-4-431-65950-1

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_75

    DOI

    http://dx.doi.org/10.1007/978-4-431-65950-1_75

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013069499


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "TQM Promotion div.Toyota Motor Corporation, 1, Toyota-cho, Toyota, Aichi 471, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amasaka", 
            "givenName": "Kakuro", 
            "id": "sg:person.016514760775.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016514760775.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-59105-1_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029411884", 
              "https://doi.org/10.1007/978-3-642-59105-1_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59105-1_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029411884", 
              "https://doi.org/10.1007/978-3-642-59105-1_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59105-1_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031216779", 
              "https://doi.org/10.1007/978-3-642-59105-1_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59105-1_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031216779", 
              "https://doi.org/10.1007/978-3-642-59105-1_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59105-1_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047606541", 
              "https://doi.org/10.1007/978-3-642-59105-1_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59105-1_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047606541", 
              "https://doi.org/10.1007/978-3-642-59105-1_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s021853939600003x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062979097"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998", 
        "datePublishedReg": "1998-01-01", 
        "description": "To. capture the true nature of making products, and in the belief that the best personnel developing is practical research to raise the technological level, we have been engaged in SQC promotion activities under the banner \u201cSQC Renaissance\u201d. The aim of SQC promoted by Toyota is to take up the challenge of solving vital technological. assignments, and to conduct superior QCDS research by employing SQC in a scientific, recursive manner. To this end, we must build Toyota\u2019s technical methods for conducting scientific SQC as a key technology in all stages of the management process, from product planning and development through to manufacturing and sales. Especially, multivariate analysis resolves complex entanglements of cause and effect relationships for both quantitative and qualitative data. A part of application examples are reported below, focusing on the cluster analysis as a representative example.", 
        "editor": [
          {
            "familyName": "Hayashi", 
            "givenName": "Chikio", 
            "type": "Person"
          }, 
          {
            "familyName": "Yajima", 
            "givenName": "Keiji", 
            "type": "Person"
          }, 
          {
            "familyName": "Bock", 
            "givenName": "Hans-Hermann", 
            "type": "Person"
          }, 
          {
            "familyName": "Ohsumi", 
            "givenName": "Noboru", 
            "type": "Person"
          }, 
          {
            "familyName": "Tanaka", 
            "givenName": "Yutaka", 
            "type": "Person"
          }, 
          {
            "familyName": "Baba", 
            "givenName": "Yasumasa", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-4-431-65950-1_75", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-4-431-70208-5", 
            "978-4-431-65950-1"
          ], 
          "name": "Data Science, Classification, and Related Methods", 
          "type": "Book"
        }, 
        "name": "Application of Classification and Related Methods to SQC Renaissance in Toyota Motor", 
        "pagination": "684-695", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-4-431-65950-1_75"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3e42c7a4fa7b9a0ea41951136ac5651a51c5f3affaf973b196ff86bffccfa1e8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013069499"
            ]
          }
        ], 
        "publisher": {
          "location": "Tokyo", 
          "name": "Springer Japan", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-4-431-65950-1_75", 
          "https://app.dimensions.ai/details/publication/pub.1013069499"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T15:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000251.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-4-431-65950-1_75"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_75'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_75'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_75'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65950-1_75'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-4-431-65950-1_75 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N0a3f86669dbe424fb886222aa36ba5e0
    4 schema:citation sg:pub.10.1007/978-3-642-59105-1_24
    5 sg:pub.10.1007/978-3-642-59105-1_26
    6 sg:pub.10.1007/978-3-642-59105-1_27
    7 https://doi.org/10.1142/s021853939600003x
    8 schema:datePublished 1998
    9 schema:datePublishedReg 1998-01-01
    10 schema:description To. capture the true nature of making products, and in the belief that the best personnel developing is practical research to raise the technological level, we have been engaged in SQC promotion activities under the banner “SQC Renaissance”. The aim of SQC promoted by Toyota is to take up the challenge of solving vital technological. assignments, and to conduct superior QCDS research by employing SQC in a scientific, recursive manner. To this end, we must build Toyota’s technical methods for conducting scientific SQC as a key technology in all stages of the management process, from product planning and development through to manufacturing and sales. Especially, multivariate analysis resolves complex entanglements of cause and effect relationships for both quantitative and qualitative data. A part of application examples are reported below, focusing on the cluster analysis as a representative example.
    11 schema:editor Nff0dbb912d794fb1b58eabf1e2e0a2fb
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N3b790e3964ff41b8a70466ba5fd6e490
    16 schema:name Application of Classification and Related Methods to SQC Renaissance in Toyota Motor
    17 schema:pagination 684-695
    18 schema:productId N468eb480f6b64deca153e9b35b17b8bd
    19 N5b6ca6d49b0242418bfdd5cd301614d4
    20 N8812b90a3838400481f80762cb2b7468
    21 schema:publisher N7b948dbaa5a846b2b2581f391a576e25
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013069499
    23 https://doi.org/10.1007/978-4-431-65950-1_75
    24 schema:sdDatePublished 2019-04-15T15:19
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N589cb8fdffc9420fbf01b154390fdb71
    27 schema:url http://link.springer.com/10.1007/978-4-431-65950-1_75
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N004ee4ba8f7a44f084d88e7fb4c4f0ba schema:familyName Tanaka
    32 schema:givenName Yutaka
    33 rdf:type schema:Person
    34 N0a3f86669dbe424fb886222aa36ba5e0 rdf:first sg:person.016514760775.17
    35 rdf:rest rdf:nil
    36 N11daac5295de4930971835573a23d24d schema:familyName Ohsumi
    37 schema:givenName Noboru
    38 rdf:type schema:Person
    39 N230b283634ff45fa94715b78fee9d900 rdf:first N11daac5295de4930971835573a23d24d
    40 rdf:rest N91492ba49da642878b74ebe63fac85dd
    41 N2b92c361630d4cf9a38e4cd92dfe1778 schema:familyName Yajima
    42 schema:givenName Keiji
    43 rdf:type schema:Person
    44 N3a192baf73434f1d8b60e3c43304b97b schema:familyName Hayashi
    45 schema:givenName Chikio
    46 rdf:type schema:Person
    47 N3b790e3964ff41b8a70466ba5fd6e490 schema:isbn 978-4-431-65950-1
    48 978-4-431-70208-5
    49 schema:name Data Science, Classification, and Related Methods
    50 rdf:type schema:Book
    51 N3b913d72fbf74325a6f3ba383c3847b4 rdf:first N611a7a9cfbf840b4936d737604409386
    52 rdf:rest rdf:nil
    53 N468eb480f6b64deca153e9b35b17b8bd schema:name readcube_id
    54 schema:value 3e42c7a4fa7b9a0ea41951136ac5651a51c5f3affaf973b196ff86bffccfa1e8
    55 rdf:type schema:PropertyValue
    56 N589cb8fdffc9420fbf01b154390fdb71 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N5b6ca6d49b0242418bfdd5cd301614d4 schema:name dimensions_id
    59 schema:value pub.1013069499
    60 rdf:type schema:PropertyValue
    61 N606652ab81f24d4285ed9d65fe314f28 rdf:first N2b92c361630d4cf9a38e4cd92dfe1778
    62 rdf:rest N8430f56b07944572af0922518061ba6c
    63 N611a7a9cfbf840b4936d737604409386 schema:familyName Baba
    64 schema:givenName Yasumasa
    65 rdf:type schema:Person
    66 N7b948dbaa5a846b2b2581f391a576e25 schema:location Tokyo
    67 schema:name Springer Japan
    68 rdf:type schema:Organisation
    69 N8430f56b07944572af0922518061ba6c rdf:first Ne5d9af765bf94a3c85de1f8799099c2d
    70 rdf:rest N230b283634ff45fa94715b78fee9d900
    71 N8812b90a3838400481f80762cb2b7468 schema:name doi
    72 schema:value 10.1007/978-4-431-65950-1_75
    73 rdf:type schema:PropertyValue
    74 N91492ba49da642878b74ebe63fac85dd rdf:first N004ee4ba8f7a44f084d88e7fb4c4f0ba
    75 rdf:rest N3b913d72fbf74325a6f3ba383c3847b4
    76 Nbf06095c2a144595b85a5ba9f5f973e8 schema:name TQM Promotion div.Toyota Motor Corporation, 1, Toyota-cho, Toyota, Aichi 471, Japan
    77 rdf:type schema:Organization
    78 Ne5d9af765bf94a3c85de1f8799099c2d schema:familyName Bock
    79 schema:givenName Hans-Hermann
    80 rdf:type schema:Person
    81 Nff0dbb912d794fb1b58eabf1e2e0a2fb rdf:first N3a192baf73434f1d8b60e3c43304b97b
    82 rdf:rest N606652ab81f24d4285ed9d65fe314f28
    83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Mathematical Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Statistics
    88 rdf:type schema:DefinedTerm
    89 sg:person.016514760775.17 schema:affiliation Nbf06095c2a144595b85a5ba9f5f973e8
    90 schema:familyName Amasaka
    91 schema:givenName Kakuro
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016514760775.17
    93 rdf:type schema:Person
    94 sg:pub.10.1007/978-3-642-59105-1_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029411884
    95 https://doi.org/10.1007/978-3-642-59105-1_24
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/978-3-642-59105-1_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031216779
    98 https://doi.org/10.1007/978-3-642-59105-1_26
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-3-642-59105-1_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047606541
    101 https://doi.org/10.1007/978-3-642-59105-1_27
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1142/s021853939600003x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062979097
    104 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...