Implementing a Face Detection System Practically Robust against Size Variation and Brightness Fluctuation for Distributed Autonomous Human Supporting Robotic Environment View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Hiroshi Mizoguchi , Ken-ichi Hidai , Kazuyuki Hiraoka , Masaru Tanaka , Takaomi Shigehara , Taketoshi Mishima

ABSTRACT

This paper presents a robust face detection system intended to be used for practical human interactive distributed robotic environment. Towards future aging society, there are much expectation and social demands for such human interactive environment that is possible to collaborate and support humans. Typical examples are Intelligent Room at MIT, Intelligent Space at University of Tokyo, Easy Living at Microsoft Research, and so forth. For these distributed robotic environment, face detecting function of the each agents are very crucial. However, in the real situation, it cannot be easy to realize the robust detection, because position, size, and brightness of face image are much changeable. To solve these problems the authors develop such system that can detect the face robustly in the practical situation. Since the system has wide dynamic range of detectable size and brightness of the face image, it is robust against size variation and brightness fluctuation. The dynamic range of the maximum and minimum face size is 7:1. The range of the brightness is 8:1, where maximum illumination is 1290 1x and minimum is 160 1x. By combining several techniques, such as skin color extraction, correlation-based pattern matching, multi-scale, and histogram equalization, the authors succeed to realize these robustness More... »

PAGES

113-122

Book

TITLE

Distributed Autonomous Robotic Systems 5

ISBN

978-4-431-65943-3
978-4-431-65941-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-4-431-65941-9_12

DOI

http://dx.doi.org/10.1007/978-4-431-65941-9_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052408164


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University, Saitama\u00a0338-8570, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizoguchi", 
        "givenName": "Hiroshi", 
        "id": "sg:person.0677770161.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677770161.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University, Saitama\u00a0338-8570, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hidai", 
        "givenName": "Ken-ichi", 
        "id": "sg:person.07373420115.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07373420115.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University, Saitama\u00a0338-8570, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiraoka", 
        "givenName": "Kazuyuki", 
        "id": "sg:person.010465371205.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465371205.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University, Saitama\u00a0338-8570, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Masaru", 
        "id": "sg:person.07410551165.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410551165.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University, Saitama\u00a0338-8570, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shigehara", 
        "givenName": "Takaomi", 
        "id": "sg:person.015715767475.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715767475.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University, Saitama\u00a0338-8570, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishima", 
        "givenName": "Taketoshi", 
        "id": "sg:person.013106042101.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106042101.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0921-8890(96)00004-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033429019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.655647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.824823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3516.537046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061160373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.381842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179353"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "This paper presents a robust face detection system intended to be used for practical human interactive distributed robotic environment. Towards future aging society, there are much expectation and social demands for such human interactive environment that is possible to collaborate and support humans. Typical examples are Intelligent Room at MIT, Intelligent Space at University of Tokyo, Easy Living at Microsoft Research, and so forth. For these distributed robotic environment, face detecting function of the each agents are very crucial. However, in the real situation, it cannot be easy to realize the robust detection, because position, size, and brightness of face image are much changeable. To solve these problems the authors develop such system that can detect the face robustly in the practical situation. Since the system has wide dynamic range of detectable size and brightness of the face image, it is robust against size variation and brightness fluctuation. The dynamic range of the maximum and minimum face size is 7:1. The range of the brightness is 8:1, where maximum illumination is 1290 1x and minimum is 160 1x. By combining several techniques, such as skin color extraction, correlation-based pattern matching, multi-scale, and histogram equalization, the authors succeed to realize these robustness", 
    "editor": [
      {
        "familyName": "Asama", 
        "givenName": "Hajime", 
        "type": "Person"
      }, 
      {
        "familyName": "Arai", 
        "givenName": "Tamio", 
        "type": "Person"
      }, 
      {
        "familyName": "Fukuda", 
        "givenName": "Toshio", 
        "type": "Person"
      }, 
      {
        "familyName": "Hasegawa", 
        "givenName": "Tsutomu", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-4-431-65941-9_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-4-431-65943-3", 
        "978-4-431-65941-9"
      ], 
      "name": "Distributed Autonomous Robotic Systems 5", 
      "type": "Book"
    }, 
    "name": "Implementing a Face Detection System Practically Robust against Size Variation and Brightness Fluctuation for Distributed Autonomous Human Supporting Robotic Environment", 
    "pagination": "113-122", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-4-431-65941-9_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f9a31d2724be4a75c02bd0d85dd1627717a1b5c48469c4782f9b231a18ad4529"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052408164"
        ]
      }
    ], 
    "publisher": {
      "location": "Tokyo", 
      "name": "Springer Japan", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-4-431-65941-9_12", 
      "https://app.dimensions.ai/details/publication/pub.1052408164"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-4-431-65941-9_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65941-9_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65941-9_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65941-9_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-65941-9_12'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-4-431-65941-9_12 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfd71cbab7aa34f5493e5d9db86167181
4 schema:citation https://doi.org/10.1016/0921-8890(96)00004-8
5 https://doi.org/10.1109/34.655647
6 https://doi.org/10.1109/34.824823
7 https://doi.org/10.1109/3516.537046
8 https://doi.org/10.1109/5.381842
9 schema:datePublished 2002
10 schema:datePublishedReg 2002-01-01
11 schema:description This paper presents a robust face detection system intended to be used for practical human interactive distributed robotic environment. Towards future aging society, there are much expectation and social demands for such human interactive environment that is possible to collaborate and support humans. Typical examples are Intelligent Room at MIT, Intelligent Space at University of Tokyo, Easy Living at Microsoft Research, and so forth. For these distributed robotic environment, face detecting function of the each agents are very crucial. However, in the real situation, it cannot be easy to realize the robust detection, because position, size, and brightness of face image are much changeable. To solve these problems the authors develop such system that can detect the face robustly in the practical situation. Since the system has wide dynamic range of detectable size and brightness of the face image, it is robust against size variation and brightness fluctuation. The dynamic range of the maximum and minimum face size is 7:1. The range of the brightness is 8:1, where maximum illumination is 1290 1x and minimum is 160 1x. By combining several techniques, such as skin color extraction, correlation-based pattern matching, multi-scale, and histogram equalization, the authors succeed to realize these robustness
12 schema:editor N9ae395d02303440ca9b38724cd3f916d
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N772e058b49b94ee8850cb31e67a6ee9c
17 schema:name Implementing a Face Detection System Practically Robust against Size Variation and Brightness Fluctuation for Distributed Autonomous Human Supporting Robotic Environment
18 schema:pagination 113-122
19 schema:productId N301b21e818954e4cb76b9c661278d135
20 N4bcc373f89f64dfc9621ba2989c8d1bd
21 N51aacd7c8f3145d58ee9d2e0c948ce9d
22 schema:publisher N56fd44a8a31f44eca22ceaca085e9ba3
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052408164
24 https://doi.org/10.1007/978-4-431-65941-9_12
25 schema:sdDatePublished 2019-04-15T14:28
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N6a16e6dd99f34f1a80531becbc87fd13
28 schema:url http://link.springer.com/10.1007/978-4-431-65941-9_12
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N2b7661d5ad194052b88045b9069cb8e4 rdf:first sg:person.015715767475.15
33 rdf:rest N60ab3b5e187741209c334d10d9ee98c7
34 N301b21e818954e4cb76b9c661278d135 schema:name readcube_id
35 schema:value f9a31d2724be4a75c02bd0d85dd1627717a1b5c48469c4782f9b231a18ad4529
36 rdf:type schema:PropertyValue
37 N44065db1d5e542bb8d0346c5bbeb26e8 rdf:first sg:person.07410551165.07
38 rdf:rest N2b7661d5ad194052b88045b9069cb8e4
39 N4bcc373f89f64dfc9621ba2989c8d1bd schema:name doi
40 schema:value 10.1007/978-4-431-65941-9_12
41 rdf:type schema:PropertyValue
42 N51aacd7c8f3145d58ee9d2e0c948ce9d schema:name dimensions_id
43 schema:value pub.1052408164
44 rdf:type schema:PropertyValue
45 N56fd44a8a31f44eca22ceaca085e9ba3 schema:location Tokyo
46 schema:name Springer Japan
47 rdf:type schema:Organisation
48 N60378d8ec81b4f01ba65f76d0557abfc schema:familyName Fukuda
49 schema:givenName Toshio
50 rdf:type schema:Person
51 N60ab3b5e187741209c334d10d9ee98c7 rdf:first sg:person.013106042101.51
52 rdf:rest rdf:nil
53 N6a16e6dd99f34f1a80531becbc87fd13 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N772e058b49b94ee8850cb31e67a6ee9c schema:isbn 978-4-431-65941-9
56 978-4-431-65943-3
57 schema:name Distributed Autonomous Robotic Systems 5
58 rdf:type schema:Book
59 N7ded8ca1cde74e08a509c3e7ba62615b schema:familyName Arai
60 schema:givenName Tamio
61 rdf:type schema:Person
62 N8ad37d8cdea04adf95df0067764139d9 rdf:first sg:person.07373420115.22
63 rdf:rest N9849a5709fbd404cbe13b36af913aca5
64 N914467794b0147788417e7aba991c630 rdf:first N60378d8ec81b4f01ba65f76d0557abfc
65 rdf:rest Ncd698a9d32a44c119183c9e81cd4ab72
66 N9849a5709fbd404cbe13b36af913aca5 rdf:first sg:person.010465371205.51
67 rdf:rest N44065db1d5e542bb8d0346c5bbeb26e8
68 N9ae395d02303440ca9b38724cd3f916d rdf:first Nc81bdd2b7e604211b23529fb96a41cbd
69 rdf:rest Na1631bbaea514d568dce420bd7514fb0
70 Na1631bbaea514d568dce420bd7514fb0 rdf:first N7ded8ca1cde74e08a509c3e7ba62615b
71 rdf:rest N914467794b0147788417e7aba991c630
72 Nc81bdd2b7e604211b23529fb96a41cbd schema:familyName Asama
73 schema:givenName Hajime
74 rdf:type schema:Person
75 Ncd698a9d32a44c119183c9e81cd4ab72 rdf:first Nd2055d77b5014c2b90d0b9c275df5c66
76 rdf:rest rdf:nil
77 Nd2055d77b5014c2b90d0b9c275df5c66 schema:familyName Hasegawa
78 schema:givenName Tsutomu
79 rdf:type schema:Person
80 Nfd71cbab7aa34f5493e5d9db86167181 rdf:first sg:person.0677770161.46
81 rdf:rest N8ad37d8cdea04adf95df0067764139d9
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:person.010465371205.51 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
89 schema:familyName Hiraoka
90 schema:givenName Kazuyuki
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465371205.51
92 rdf:type schema:Person
93 sg:person.013106042101.51 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
94 schema:familyName Mishima
95 schema:givenName Taketoshi
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106042101.51
97 rdf:type schema:Person
98 sg:person.015715767475.15 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
99 schema:familyName Shigehara
100 schema:givenName Takaomi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715767475.15
102 rdf:type schema:Person
103 sg:person.0677770161.46 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
104 schema:familyName Mizoguchi
105 schema:givenName Hiroshi
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677770161.46
107 rdf:type schema:Person
108 sg:person.07373420115.22 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
109 schema:familyName Hidai
110 schema:givenName Ken-ichi
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07373420115.22
112 rdf:type schema:Person
113 sg:person.07410551165.07 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
114 schema:familyName Tanaka
115 schema:givenName Masaru
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410551165.07
117 rdf:type schema:Person
118 https://doi.org/10.1016/0921-8890(96)00004-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033429019
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/34.655647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156724
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/34.824823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157043
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/3516.537046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160373
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/5.381842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179353
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.263023.6 schema:alternateName Saitama University
129 schema:name Saitama University, Saitama 338-8570, Japan
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...