Theoretical Study of Particle Motion Under High Intensity Laser–Plasma Interaction Aiming for High Energy Density Science View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Natsumi Iwata , Yasuaki Kishimoto , Kenji Imadera

ABSTRACT

In recent years, high power short pulse lasers in the range of 1018–22 W/cm2 have been developed and explored new science and applications. One of them is the fast ignition-based laser fusion, which is expected as one of clean and abundant energy sources. In determining the interaction between such high intensity lasers and plasmas, the ponderomotive force (light pressure) plays an essential role due to the strong non-uniformity of the laser field strength originated from tight focusing of the laser light. The force has been expressed as that proportional to the gradient of the laser field amplitude at the oscillation center of the particle. However, under the tight focusing, not only the gradient, which corresponds to the first-order perturbation to the uniform field, but also the higher order structures, e.g. field curvature to the second order, becomes important in determining the particle orbit. In order to precisely describe the relativistic ponderomotive force including such effects, here, we introduce the noncanonical Lie perturbation theory. We successfully derived the oscillation-center equation of motion up to the second order keeping the Hamiltonian structure rigorously. The resulting equation is found to be same as that of the first order indicating that no additional force appears up to the second order due to the symmetric nature of the field curvature. More... »

PAGES

185-191

Book

TITLE

Zero-Carbon Energy Kyoto 2011

ISBN

978-4-431-54066-3
978-4-431-54067-0

Author Affiliations

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-4-431-54067-0_22

DOI

http://dx.doi.org/10.1007/978-4-431-54067-0_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015775110


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto\u00a0611-0011, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwata", 
        "givenName": "Natsumi", 
        "id": "sg:person.011334467141.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334467141.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto\u00a0611-0011, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishimoto", 
        "givenName": "Yasuaki", 
        "id": "sg:person.015472360645.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015472360645.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto\u00a0611-0011, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imadera", 
        "givenName": "Kenji", 
        "id": "sg:person.016701045346.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016701045346.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1585/pfr.5.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015390367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1585/pfr.6.1201004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025221185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(83)90313-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031120580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.871343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058123463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.7527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.7527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.3719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.3719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.1229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839670"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In recent years, high power short pulse lasers in the range of 1018\u201322 W/cm2 have been developed and explored new science and applications. One of them is the fast ignition-based laser fusion, which is expected as one of clean and abundant energy sources. In determining the interaction between such high intensity lasers and plasmas, the ponderomotive force (light pressure) plays an essential role due to the strong non-uniformity of the laser field strength originated from tight focusing of the laser light. The force has been expressed as that proportional to the gradient of the laser field amplitude at the oscillation center of the particle. However, under the tight focusing, not only the gradient, which corresponds to the first-order perturbation to the uniform field, but also the higher order structures, e.g. field curvature to the second order, becomes important in determining the particle orbit. In order to precisely describe the relativistic ponderomotive force including such effects, here, we introduce the noncanonical Lie perturbation theory. We successfully derived the oscillation-center equation of motion up to the second order keeping the Hamiltonian structure rigorously. The resulting equation is found to be same as that of the first order indicating that no additional force appears up to the second order due to the symmetric nature of the field curvature.", 
    "editor": [
      {
        "familyName": "Yao", 
        "givenName": "Takeshi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-4-431-54067-0_22", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6013533", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-4-431-54066-3", 
        "978-4-431-54067-0"
      ], 
      "name": "Zero-Carbon Energy Kyoto 2011", 
      "type": "Book"
    }, 
    "name": "Theoretical Study of Particle Motion Under High Intensity Laser\u2013Plasma Interaction Aiming for High Energy Density Science", 
    "pagination": "185-191", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-4-431-54067-0_22"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b29c2ba86e7735cbea12546728fe0a053a0d67f5f6f286019939729a934e12e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015775110"
        ]
      }
    ], 
    "publisher": {
      "location": "Tokyo", 
      "name": "Springer Japan", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-4-431-54067-0_22", 
      "https://app.dimensions.ai/details/publication/pub.1015775110"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000252.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-4-431-54067-0_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54067-0_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54067-0_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54067-0_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54067-0_22'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-4-431-54067-0_22 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N81ee021324954a8b99e597badef4fde3
4 schema:citation https://doi.org/10.1016/0003-4916(83)90313-5
5 https://doi.org/10.1063/1.871343
6 https://doi.org/10.1103/physreve.55.7527
7 https://doi.org/10.1103/physreve.58.3719
8 https://doi.org/10.1103/revmodphys.78.309
9 https://doi.org/10.1103/revmodphys.79.421
10 https://doi.org/10.1103/revmodphys.81.1229
11 https://doi.org/10.1585/pfr.5.028
12 https://doi.org/10.1585/pfr.6.1201004
13 schema:datePublished 2012
14 schema:datePublishedReg 2012-01-01
15 schema:description In recent years, high power short pulse lasers in the range of 1018–22 W/cm2 have been developed and explored new science and applications. One of them is the fast ignition-based laser fusion, which is expected as one of clean and abundant energy sources. In determining the interaction between such high intensity lasers and plasmas, the ponderomotive force (light pressure) plays an essential role due to the strong non-uniformity of the laser field strength originated from tight focusing of the laser light. The force has been expressed as that proportional to the gradient of the laser field amplitude at the oscillation center of the particle. However, under the tight focusing, not only the gradient, which corresponds to the first-order perturbation to the uniform field, but also the higher order structures, e.g. field curvature to the second order, becomes important in determining the particle orbit. In order to precisely describe the relativistic ponderomotive force including such effects, here, we introduce the noncanonical Lie perturbation theory. We successfully derived the oscillation-center equation of motion up to the second order keeping the Hamiltonian structure rigorously. The resulting equation is found to be same as that of the first order indicating that no additional force appears up to the second order due to the symmetric nature of the field curvature.
16 schema:editor N6bc8a152d355401bb9c75df762e27a59
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N4e12b526fedf4fc4b78e4e20b0e961ec
21 schema:name Theoretical Study of Particle Motion Under High Intensity Laser–Plasma Interaction Aiming for High Energy Density Science
22 schema:pagination 185-191
23 schema:productId N0f6cb46e695f4432a5a988dc961e1daf
24 N895e398a5a8a49a5a256d04dd0bbfefd
25 Nd8e87faf7a604493a9cfad6859bf6ccc
26 schema:publisher N2c0c7e0ac72346a48f0753cc9b6fd8fc
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015775110
28 https://doi.org/10.1007/978-4-431-54067-0_22
29 schema:sdDatePublished 2019-04-15T18:10
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nf5102782435f42adaa7fefcf39dce63c
32 schema:url http://link.springer.com/10.1007/978-4-431-54067-0_22
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0f6cb46e695f4432a5a988dc961e1daf schema:name readcube_id
37 schema:value 4b29c2ba86e7735cbea12546728fe0a053a0d67f5f6f286019939729a934e12e
38 rdf:type schema:PropertyValue
39 N2c0c7e0ac72346a48f0753cc9b6fd8fc schema:location Tokyo
40 schema:name Springer Japan
41 rdf:type schema:Organisation
42 N32d49802541f4e95b908329234611252 rdf:first sg:person.016701045346.73
43 rdf:rest rdf:nil
44 N39a7e1251bae4960a07c9b6aa2a16a54 rdf:first sg:person.015472360645.11
45 rdf:rest N32d49802541f4e95b908329234611252
46 N4df3f1229a474c3bbc4a9124194e6e57 schema:familyName Yao
47 schema:givenName Takeshi
48 rdf:type schema:Person
49 N4e12b526fedf4fc4b78e4e20b0e961ec schema:isbn 978-4-431-54066-3
50 978-4-431-54067-0
51 schema:name Zero-Carbon Energy Kyoto 2011
52 rdf:type schema:Book
53 N6bc8a152d355401bb9c75df762e27a59 rdf:first N4df3f1229a474c3bbc4a9124194e6e57
54 rdf:rest rdf:nil
55 N81ee021324954a8b99e597badef4fde3 rdf:first sg:person.011334467141.64
56 rdf:rest N39a7e1251bae4960a07c9b6aa2a16a54
57 N895e398a5a8a49a5a256d04dd0bbfefd schema:name dimensions_id
58 schema:value pub.1015775110
59 rdf:type schema:PropertyValue
60 Nd8e87faf7a604493a9cfad6859bf6ccc schema:name doi
61 schema:value 10.1007/978-4-431-54067-0_22
62 rdf:type schema:PropertyValue
63 Nf5102782435f42adaa7fefcf39dce63c schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
69 schema:name Other Physical Sciences
70 rdf:type schema:DefinedTerm
71 sg:grant.6013533 http://pending.schema.org/fundedItem sg:pub.10.1007/978-4-431-54067-0_22
72 rdf:type schema:MonetaryGrant
73 sg:person.011334467141.64 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
74 schema:familyName Iwata
75 schema:givenName Natsumi
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011334467141.64
77 rdf:type schema:Person
78 sg:person.015472360645.11 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
79 schema:familyName Kishimoto
80 schema:givenName Yasuaki
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015472360645.11
82 rdf:type schema:Person
83 sg:person.016701045346.73 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
84 schema:familyName Imadera
85 schema:givenName Kenji
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016701045346.73
87 rdf:type schema:Person
88 https://doi.org/10.1016/0003-4916(83)90313-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031120580
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1063/1.871343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058123463
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physreve.55.7527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720998
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physreve.58.3719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060722817
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/revmodphys.78.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839613
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/revmodphys.79.421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839630
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/revmodphys.81.1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839670
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1585/pfr.5.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015390367
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1585/pfr.6.1201004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025221185
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
107 schema:name Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...