Comparative Primate Molecular Cytogenetics: Revealing Ancestral Genomes, Marker Order, and Evolutionary New Centromeres View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011-12-19

AUTHORS

Roscoe Stanyon , Nicoletta Archidiacono , Mariano Rocchi

ABSTRACT

In this review, we focus on the cytogenetic level of primate genome organization: chromosomes and karyotypes. Reconstructing the genome of ancestors is an obligatory goal of comparative primate cytogenetics. Cytogenetic comparison between species has a long history, going back to the early decades of the last century. Classical primate cytogeneticists provided basic data on the number of chromosomes, their size, and the relative position of the centromere of many primate species. Chromosome banding showed the high level of conservation among humans, apes, and monkeys, but establishing chromosomal homology between distantly related species or species characterized by rapid chromosomal evolution remained speculative until the advent of molecular cytogenetics. Chromosome painting soon resolved problems of accurately determining chromosomal homology. Painting probes could easily map all the translocation between primate species but did not provide information on intrachromosomal rearrangements. Then, FISH with cloned DNA provided high-resolution cytogenetic comparisons of marker order along chromosomes. Results revealed that centromere shifts (“evolutionary new centromere” ENC) are an important process in modifying primate genomes on a par with translocations and inversions. Comparison between ENC and clinical neocentromeres shows that evolutionary perspectives can provide compelling underlying explicative grounds for contemporary genomic phenomena. More... »

PAGES

193-216

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13

DOI

http://dx.doi.org/10.1007/978-4-431-54011-3_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022930980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0603", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Evolutionary Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratory of Anthropology, Department of Evolutionary Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Laboratory of Anthropology, Department of Evolutionary Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanyon", 
        "givenName": "Roscoe", 
        "id": "sg:person.01171025130.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171025130.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7644.1", 
          "name": [
            "Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Archidiacono", 
        "givenName": "Nicoletta", 
        "id": "sg:person.056410501.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.056410501.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7644.1", 
          "name": [
            "Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rocchi", 
        "givenName": "Mariano", 
        "id": "sg:person.01021645746.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021645746.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-12-19", 
    "datePublishedReg": "2011-12-19", 
    "description": "In this review, we focus on the cytogenetic level of primate genome organization: chromosomes and karyotypes. Reconstructing the genome of ancestors is an obligatory goal of comparative primate cytogenetics. Cytogenetic comparison between species has a long history, going back to the early decades of the last century. Classical primate cytogeneticists provided basic data on the number of chromosomes, their size, and the relative position of the centromere of many primate species. Chromosome banding showed the high level of conservation among humans, apes, and monkeys, but establishing chromosomal homology between distantly related species or species characterized by rapid chromosomal evolution remained speculative until the advent of molecular cytogenetics. Chromosome painting soon resolved problems of accurately determining chromosomal homology. Painting probes could easily map all the translocation between primate species but did not provide information on intrachromosomal rearrangements. Then, FISH with cloned DNA provided high-resolution cytogenetic comparisons of marker order along chromosomes. Results revealed that centromere shifts (\u201cevolutionary new centromere\u201d ENC) are an important process in modifying primate genomes on a par with translocations and inversions. Comparison between ENC and clinical neocentromeres shows that evolutionary perspectives can provide compelling underlying explicative grounds for contemporary genomic phenomena.", 
    "editor": [
      {
        "familyName": "Hirai", 
        "givenName": "Hirohisa", 
        "type": "Person"
      }, 
      {
        "familyName": "Imai", 
        "givenName": "Hiroo", 
        "type": "Person"
      }, 
      {
        "familyName": "Go", 
        "givenName": "Yasuhiro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-4-431-54011-3_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-4-431-54010-6", 
        "978-4-431-54011-3"
      ], 
      "name": "Post-Genome Biology of Primates", 
      "type": "Book"
    }, 
    "keywords": [
      "chromosomal homology", 
      "marker order", 
      "cytogenetic comparison", 
      "rapid chromosomal evolution", 
      "evolutionary new centromeres", 
      "primate species", 
      "number of chromosomes", 
      "centromere shifts", 
      "clinical neocentromeres", 
      "new centromeres", 
      "chromosomal evolution", 
      "ancestral genomes", 
      "genome organization", 
      "primate genomes", 
      "intrachromosomal rearrangements", 
      "chromosome painting", 
      "genomic phenomena", 
      "chromosome banding", 
      "cloned DNA", 
      "molecular cytogenetics", 
      "genome", 
      "cytogenetic level", 
      "chromosomes", 
      "evolutionary perspective", 
      "species", 
      "centromeres", 
      "homology", 
      "translocation", 
      "neocentromeres", 
      "important process", 
      "cytogenetics", 
      "ancestor", 
      "obligatory goal", 
      "fish", 
      "DNA", 
      "cytogeneticists", 
      "conservation", 
      "high levels", 
      "karyotype", 
      "apes", 
      "last century", 
      "rearrangement", 
      "evolution", 
      "humans", 
      "banding", 
      "levels", 
      "probe", 
      "long history", 
      "relative position", 
      "ENC", 
      "comparison", 
      "basic data", 
      "shift", 
      "par", 
      "number", 
      "size", 
      "organization", 
      "review", 
      "process", 
      "advent", 
      "monkeys", 
      "decades", 
      "position", 
      "data", 
      "results", 
      "information", 
      "order", 
      "ground", 
      "inversion", 
      "history", 
      "phenomenon", 
      "century", 
      "perspective", 
      "goal", 
      "painting", 
      "early decades", 
      "problem"
    ], 
    "name": "Comparative Primate Molecular Cytogenetics: Revealing Ancestral Genomes, Marker Order, and Evolutionary New Centromeres", 
    "pagination": "193-216", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022930980"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-4-431-54011-3_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-4-431-54011-3_13", 
      "https://app.dimensions.ai/details/publication/pub.1022930980"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_23.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-4-431-54011-3_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      23 PREDICATES      103 URIs      95 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-4-431-54011-3_13 schema:about anzsrc-for:06
2 anzsrc-for:0603
3 anzsrc-for:0604
4 schema:author N41f61491a88a4c3ab8e362677ef09a3e
5 schema:datePublished 2011-12-19
6 schema:datePublishedReg 2011-12-19
7 schema:description In this review, we focus on the cytogenetic level of primate genome organization: chromosomes and karyotypes. Reconstructing the genome of ancestors is an obligatory goal of comparative primate cytogenetics. Cytogenetic comparison between species has a long history, going back to the early decades of the last century. Classical primate cytogeneticists provided basic data on the number of chromosomes, their size, and the relative position of the centromere of many primate species. Chromosome banding showed the high level of conservation among humans, apes, and monkeys, but establishing chromosomal homology between distantly related species or species characterized by rapid chromosomal evolution remained speculative until the advent of molecular cytogenetics. Chromosome painting soon resolved problems of accurately determining chromosomal homology. Painting probes could easily map all the translocation between primate species but did not provide information on intrachromosomal rearrangements. Then, FISH with cloned DNA provided high-resolution cytogenetic comparisons of marker order along chromosomes. Results revealed that centromere shifts (“evolutionary new centromere” ENC) are an important process in modifying primate genomes on a par with translocations and inversions. Comparison between ENC and clinical neocentromeres shows that evolutionary perspectives can provide compelling underlying explicative grounds for contemporary genomic phenomena.
8 schema:editor N31e3386ee6e24eeb905770ff73738302
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N353d156dc2d04dff8344c82242fbe858
13 schema:keywords DNA
14 ENC
15 advent
16 ancestor
17 ancestral genomes
18 apes
19 banding
20 basic data
21 centromere shifts
22 centromeres
23 century
24 chromosomal evolution
25 chromosomal homology
26 chromosome banding
27 chromosome painting
28 chromosomes
29 clinical neocentromeres
30 cloned DNA
31 comparison
32 conservation
33 cytogenetic comparison
34 cytogenetic level
35 cytogeneticists
36 cytogenetics
37 data
38 decades
39 early decades
40 evolution
41 evolutionary new centromeres
42 evolutionary perspective
43 fish
44 genome
45 genome organization
46 genomic phenomena
47 goal
48 ground
49 high levels
50 history
51 homology
52 humans
53 important process
54 information
55 intrachromosomal rearrangements
56 inversion
57 karyotype
58 last century
59 levels
60 long history
61 marker order
62 molecular cytogenetics
63 monkeys
64 neocentromeres
65 new centromeres
66 number
67 number of chromosomes
68 obligatory goal
69 order
70 organization
71 painting
72 par
73 perspective
74 phenomenon
75 position
76 primate genomes
77 primate species
78 probe
79 problem
80 process
81 rapid chromosomal evolution
82 rearrangement
83 relative position
84 results
85 review
86 shift
87 size
88 species
89 translocation
90 schema:name Comparative Primate Molecular Cytogenetics: Revealing Ancestral Genomes, Marker Order, and Evolutionary New Centromeres
91 schema:pagination 193-216
92 schema:productId N47c7928aecfa4f6a80feca09ba50dafc
93 Ne2f171f039ed463aad1924fbcc7592df
94 schema:publisher N53b9bd360a66400d9da2e44983e8f436
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022930980
96 https://doi.org/10.1007/978-4-431-54011-3_13
97 schema:sdDatePublished 2022-05-20T07:44
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher Na8d2ea03103f4323a8b112e9ab3f1434
100 schema:url https://doi.org/10.1007/978-4-431-54011-3_13
101 sgo:license sg:explorer/license/
102 sgo:sdDataset chapters
103 rdf:type schema:Chapter
104 N31e3386ee6e24eeb905770ff73738302 rdf:first Nf9b4633e698846cdbe2d386638a13612
105 rdf:rest N72d42d5160054f4ba64b35cf9a27ed6d
106 N353d156dc2d04dff8344c82242fbe858 schema:isbn 978-4-431-54010-6
107 978-4-431-54011-3
108 schema:name Post-Genome Biology of Primates
109 rdf:type schema:Book
110 N41f61491a88a4c3ab8e362677ef09a3e rdf:first sg:person.01171025130.24
111 rdf:rest Na7940871d9be440e99d202c6be513143
112 N47c7928aecfa4f6a80feca09ba50dafc schema:name dimensions_id
113 schema:value pub.1022930980
114 rdf:type schema:PropertyValue
115 N53b9bd360a66400d9da2e44983e8f436 schema:name Springer Nature
116 rdf:type schema:Organisation
117 N72d42d5160054f4ba64b35cf9a27ed6d rdf:first Ncee54a15996c4b3ca43f4b6d91ece64a
118 rdf:rest Na84c5ffab24a4d1498045bbdbed245ff
119 Na7940871d9be440e99d202c6be513143 rdf:first sg:person.056410501.58
120 rdf:rest Na852d4dba7ae42ea92fe7a2833e47ae2
121 Na84c5ffab24a4d1498045bbdbed245ff rdf:first Ne62f4744c80045c19817ed3fc3a40c31
122 rdf:rest rdf:nil
123 Na852d4dba7ae42ea92fe7a2833e47ae2 rdf:first sg:person.01021645746.17
124 rdf:rest rdf:nil
125 Na8d2ea03103f4323a8b112e9ab3f1434 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Ncee54a15996c4b3ca43f4b6d91ece64a schema:familyName Imai
128 schema:givenName Hiroo
129 rdf:type schema:Person
130 Ne2f171f039ed463aad1924fbcc7592df schema:name doi
131 schema:value 10.1007/978-4-431-54011-3_13
132 rdf:type schema:PropertyValue
133 Ne62f4744c80045c19817ed3fc3a40c31 schema:familyName Go
134 schema:givenName Yasuhiro
135 rdf:type schema:Person
136 Nf9b4633e698846cdbe2d386638a13612 schema:familyName Hirai
137 schema:givenName Hirohisa
138 rdf:type schema:Person
139 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
140 schema:name Biological Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0603 schema:inDefinedTermSet anzsrc-for:
143 schema:name Evolutionary Biology
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
146 schema:name Genetics
147 rdf:type schema:DefinedTerm
148 sg:person.01021645746.17 schema:affiliation grid-institutes:grid.7644.1
149 schema:familyName Rocchi
150 schema:givenName Mariano
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021645746.17
152 rdf:type schema:Person
153 sg:person.01171025130.24 schema:affiliation grid-institutes:grid.8404.8
154 schema:familyName Stanyon
155 schema:givenName Roscoe
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171025130.24
157 rdf:type schema:Person
158 sg:person.056410501.58 schema:affiliation grid-institutes:grid.7644.1
159 schema:familyName Archidiacono
160 schema:givenName Nicoletta
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.056410501.58
162 rdf:type schema:Person
163 grid-institutes:grid.7644.1 schema:alternateName Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy
164 schema:name Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy
165 rdf:type schema:Organization
166 grid-institutes:grid.8404.8 schema:alternateName Laboratory of Anthropology, Department of Evolutionary Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
167 schema:name Laboratory of Anthropology, Department of Evolutionary Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...