Ontology type: schema:Chapter
2011-12-19
AUTHORSRoscoe Stanyon , Nicoletta Archidiacono , Mariano Rocchi
ABSTRACTIn this review, we focus on the cytogenetic level of primate genome organization: chromosomes and karyotypes. Reconstructing the genome of ancestors is an obligatory goal of comparative primate cytogenetics. Cytogenetic comparison between species has a long history, going back to the early decades of the last century. Classical primate cytogeneticists provided basic data on the number of chromosomes, their size, and the relative position of the centromere of many primate species. Chromosome banding showed the high level of conservation among humans, apes, and monkeys, but establishing chromosomal homology between distantly related species or species characterized by rapid chromosomal evolution remained speculative until the advent of molecular cytogenetics. Chromosome painting soon resolved problems of accurately determining chromosomal homology. Painting probes could easily map all the translocation between primate species but did not provide information on intrachromosomal rearrangements. Then, FISH with cloned DNA provided high-resolution cytogenetic comparisons of marker order along chromosomes. Results revealed that centromere shifts (“evolutionary new centromere” ENC) are an important process in modifying primate genomes on a par with translocations and inversions. Comparison between ENC and clinical neocentromeres shows that evolutionary perspectives can provide compelling underlying explicative grounds for contemporary genomic phenomena. More... »
PAGES193-216
Post-Genome Biology of Primates
ISBN
978-4-431-54010-6
978-4-431-54011-3
http://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13
DOIhttp://dx.doi.org/10.1007/978-4-431-54011-3_13
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022930980
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0603",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Evolutionary Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratory of Anthropology, Department of Evolutionary Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy",
"id": "http://www.grid.ac/institutes/grid.8404.8",
"name": [
"Laboratory of Anthropology, Department of Evolutionary Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy"
],
"type": "Organization"
},
"familyName": "Stanyon",
"givenName": "Roscoe",
"id": "sg:person.01171025130.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171025130.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy",
"id": "http://www.grid.ac/institutes/grid.7644.1",
"name": [
"Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy"
],
"type": "Organization"
},
"familyName": "Archidiacono",
"givenName": "Nicoletta",
"id": "sg:person.056410501.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.056410501.58"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy",
"id": "http://www.grid.ac/institutes/grid.7644.1",
"name": [
"Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy"
],
"type": "Organization"
},
"familyName": "Rocchi",
"givenName": "Mariano",
"id": "sg:person.01021645746.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021645746.17"
],
"type": "Person"
}
],
"datePublished": "2011-12-19",
"datePublishedReg": "2011-12-19",
"description": "In this review, we focus on the cytogenetic level of primate genome organization: chromosomes and karyotypes. Reconstructing the genome of ancestors is an obligatory goal of comparative primate cytogenetics. Cytogenetic comparison between species has a long history, going back to the early decades of the last century. Classical primate cytogeneticists provided basic data on the number of chromosomes, their size, and the relative position of the centromere of many primate species. Chromosome banding showed the high level of conservation among humans, apes, and monkeys, but establishing chromosomal homology between distantly related species or species characterized by rapid chromosomal evolution remained speculative until the advent of molecular cytogenetics. Chromosome painting soon resolved problems of accurately determining chromosomal homology. Painting probes could easily map all the translocation between primate species but did not provide information on intrachromosomal rearrangements. Then, FISH with cloned DNA provided high-resolution cytogenetic comparisons of marker order along chromosomes. Results revealed that centromere shifts (\u201cevolutionary new centromere\u201d ENC) are an important process in modifying primate genomes on a par with translocations and inversions. Comparison between ENC and clinical neocentromeres shows that evolutionary perspectives can provide compelling underlying explicative grounds for contemporary genomic phenomena.",
"editor": [
{
"familyName": "Hirai",
"givenName": "Hirohisa",
"type": "Person"
},
{
"familyName": "Imai",
"givenName": "Hiroo",
"type": "Person"
},
{
"familyName": "Go",
"givenName": "Yasuhiro",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-4-431-54011-3_13",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-4-431-54010-6",
"978-4-431-54011-3"
],
"name": "Post-Genome Biology of Primates",
"type": "Book"
},
"keywords": [
"chromosomal homology",
"marker order",
"cytogenetic comparison",
"rapid chromosomal evolution",
"evolutionary new centromeres",
"primate species",
"number of chromosomes",
"centromere shifts",
"clinical neocentromeres",
"new centromeres",
"chromosomal evolution",
"ancestral genomes",
"genome organization",
"primate genomes",
"intrachromosomal rearrangements",
"chromosome painting",
"genomic phenomena",
"chromosome banding",
"cloned DNA",
"molecular cytogenetics",
"genome",
"cytogenetic level",
"chromosomes",
"evolutionary perspective",
"species",
"centromeres",
"homology",
"translocation",
"neocentromeres",
"important process",
"cytogenetics",
"ancestor",
"obligatory goal",
"fish",
"DNA",
"cytogeneticists",
"conservation",
"high levels",
"karyotype",
"apes",
"last century",
"rearrangement",
"evolution",
"humans",
"banding",
"levels",
"probe",
"long history",
"relative position",
"ENC",
"comparison",
"basic data",
"shift",
"par",
"number",
"size",
"organization",
"review",
"process",
"advent",
"monkeys",
"decades",
"position",
"data",
"results",
"information",
"order",
"ground",
"inversion",
"history",
"phenomenon",
"century",
"perspective",
"goal",
"painting",
"early decades",
"problem"
],
"name": "Comparative Primate Molecular Cytogenetics: Revealing Ancestral Genomes, Marker Order, and Evolutionary New Centromeres",
"pagination": "193-216",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022930980"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-4-431-54011-3_13"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-4-431-54011-3_13",
"https://app.dimensions.ai/details/publication/pub.1022930980"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_23.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-4-431-54011-3_13"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-54011-3_13'
This table displays all metadata directly associated to this object as RDF triples.
168 TRIPLES
23 PREDICATES
103 URIs
95 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-4-431-54011-3_13 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0603 |
3 | ″ | ″ | anzsrc-for:0604 |
4 | ″ | schema:author | N41f61491a88a4c3ab8e362677ef09a3e |
5 | ″ | schema:datePublished | 2011-12-19 |
6 | ″ | schema:datePublishedReg | 2011-12-19 |
7 | ″ | schema:description | In this review, we focus on the cytogenetic level of primate genome organization: chromosomes and karyotypes. Reconstructing the genome of ancestors is an obligatory goal of comparative primate cytogenetics. Cytogenetic comparison between species has a long history, going back to the early decades of the last century. Classical primate cytogeneticists provided basic data on the number of chromosomes, their size, and the relative position of the centromere of many primate species. Chromosome banding showed the high level of conservation among humans, apes, and monkeys, but establishing chromosomal homology between distantly related species or species characterized by rapid chromosomal evolution remained speculative until the advent of molecular cytogenetics. Chromosome painting soon resolved problems of accurately determining chromosomal homology. Painting probes could easily map all the translocation between primate species but did not provide information on intrachromosomal rearrangements. Then, FISH with cloned DNA provided high-resolution cytogenetic comparisons of marker order along chromosomes. Results revealed that centromere shifts (“evolutionary new centromere” ENC) are an important process in modifying primate genomes on a par with translocations and inversions. Comparison between ENC and clinical neocentromeres shows that evolutionary perspectives can provide compelling underlying explicative grounds for contemporary genomic phenomena. |
8 | ″ | schema:editor | N31e3386ee6e24eeb905770ff73738302 |
9 | ″ | schema:genre | chapter |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N353d156dc2d04dff8344c82242fbe858 |
13 | ″ | schema:keywords | DNA |
14 | ″ | ″ | ENC |
15 | ″ | ″ | advent |
16 | ″ | ″ | ancestor |
17 | ″ | ″ | ancestral genomes |
18 | ″ | ″ | apes |
19 | ″ | ″ | banding |
20 | ″ | ″ | basic data |
21 | ″ | ″ | centromere shifts |
22 | ″ | ″ | centromeres |
23 | ″ | ″ | century |
24 | ″ | ″ | chromosomal evolution |
25 | ″ | ″ | chromosomal homology |
26 | ″ | ″ | chromosome banding |
27 | ″ | ″ | chromosome painting |
28 | ″ | ″ | chromosomes |
29 | ″ | ″ | clinical neocentromeres |
30 | ″ | ″ | cloned DNA |
31 | ″ | ″ | comparison |
32 | ″ | ″ | conservation |
33 | ″ | ″ | cytogenetic comparison |
34 | ″ | ″ | cytogenetic level |
35 | ″ | ″ | cytogeneticists |
36 | ″ | ″ | cytogenetics |
37 | ″ | ″ | data |
38 | ″ | ″ | decades |
39 | ″ | ″ | early decades |
40 | ″ | ″ | evolution |
41 | ″ | ″ | evolutionary new centromeres |
42 | ″ | ″ | evolutionary perspective |
43 | ″ | ″ | fish |
44 | ″ | ″ | genome |
45 | ″ | ″ | genome organization |
46 | ″ | ″ | genomic phenomena |
47 | ″ | ″ | goal |
48 | ″ | ″ | ground |
49 | ″ | ″ | high levels |
50 | ″ | ″ | history |
51 | ″ | ″ | homology |
52 | ″ | ″ | humans |
53 | ″ | ″ | important process |
54 | ″ | ″ | information |
55 | ″ | ″ | intrachromosomal rearrangements |
56 | ″ | ″ | inversion |
57 | ″ | ″ | karyotype |
58 | ″ | ″ | last century |
59 | ″ | ″ | levels |
60 | ″ | ″ | long history |
61 | ″ | ″ | marker order |
62 | ″ | ″ | molecular cytogenetics |
63 | ″ | ″ | monkeys |
64 | ″ | ″ | neocentromeres |
65 | ″ | ″ | new centromeres |
66 | ″ | ″ | number |
67 | ″ | ″ | number of chromosomes |
68 | ″ | ″ | obligatory goal |
69 | ″ | ″ | order |
70 | ″ | ″ | organization |
71 | ″ | ″ | painting |
72 | ″ | ″ | par |
73 | ″ | ″ | perspective |
74 | ″ | ″ | phenomenon |
75 | ″ | ″ | position |
76 | ″ | ″ | primate genomes |
77 | ″ | ″ | primate species |
78 | ″ | ″ | probe |
79 | ″ | ″ | problem |
80 | ″ | ″ | process |
81 | ″ | ″ | rapid chromosomal evolution |
82 | ″ | ″ | rearrangement |
83 | ″ | ″ | relative position |
84 | ″ | ″ | results |
85 | ″ | ″ | review |
86 | ″ | ″ | shift |
87 | ″ | ″ | size |
88 | ″ | ″ | species |
89 | ″ | ″ | translocation |
90 | ″ | schema:name | Comparative Primate Molecular Cytogenetics: Revealing Ancestral Genomes, Marker Order, and Evolutionary New Centromeres |
91 | ″ | schema:pagination | 193-216 |
92 | ″ | schema:productId | N47c7928aecfa4f6a80feca09ba50dafc |
93 | ″ | ″ | Ne2f171f039ed463aad1924fbcc7592df |
94 | ″ | schema:publisher | N53b9bd360a66400d9da2e44983e8f436 |
95 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022930980 |
96 | ″ | ″ | https://doi.org/10.1007/978-4-431-54011-3_13 |
97 | ″ | schema:sdDatePublished | 2022-05-20T07:44 |
98 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
99 | ″ | schema:sdPublisher | Na8d2ea03103f4323a8b112e9ab3f1434 |
100 | ″ | schema:url | https://doi.org/10.1007/978-4-431-54011-3_13 |
101 | ″ | sgo:license | sg:explorer/license/ |
102 | ″ | sgo:sdDataset | chapters |
103 | ″ | rdf:type | schema:Chapter |
104 | N31e3386ee6e24eeb905770ff73738302 | rdf:first | Nf9b4633e698846cdbe2d386638a13612 |
105 | ″ | rdf:rest | N72d42d5160054f4ba64b35cf9a27ed6d |
106 | N353d156dc2d04dff8344c82242fbe858 | schema:isbn | 978-4-431-54010-6 |
107 | ″ | ″ | 978-4-431-54011-3 |
108 | ″ | schema:name | Post-Genome Biology of Primates |
109 | ″ | rdf:type | schema:Book |
110 | N41f61491a88a4c3ab8e362677ef09a3e | rdf:first | sg:person.01171025130.24 |
111 | ″ | rdf:rest | Na7940871d9be440e99d202c6be513143 |
112 | N47c7928aecfa4f6a80feca09ba50dafc | schema:name | dimensions_id |
113 | ″ | schema:value | pub.1022930980 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | N53b9bd360a66400d9da2e44983e8f436 | schema:name | Springer Nature |
116 | ″ | rdf:type | schema:Organisation |
117 | N72d42d5160054f4ba64b35cf9a27ed6d | rdf:first | Ncee54a15996c4b3ca43f4b6d91ece64a |
118 | ″ | rdf:rest | Na84c5ffab24a4d1498045bbdbed245ff |
119 | Na7940871d9be440e99d202c6be513143 | rdf:first | sg:person.056410501.58 |
120 | ″ | rdf:rest | Na852d4dba7ae42ea92fe7a2833e47ae2 |
121 | Na84c5ffab24a4d1498045bbdbed245ff | rdf:first | Ne62f4744c80045c19817ed3fc3a40c31 |
122 | ″ | rdf:rest | rdf:nil |
123 | Na852d4dba7ae42ea92fe7a2833e47ae2 | rdf:first | sg:person.01021645746.17 |
124 | ″ | rdf:rest | rdf:nil |
125 | Na8d2ea03103f4323a8b112e9ab3f1434 | schema:name | Springer Nature - SN SciGraph project |
126 | ″ | rdf:type | schema:Organization |
127 | Ncee54a15996c4b3ca43f4b6d91ece64a | schema:familyName | Imai |
128 | ″ | schema:givenName | Hiroo |
129 | ″ | rdf:type | schema:Person |
130 | Ne2f171f039ed463aad1924fbcc7592df | schema:name | doi |
131 | ″ | schema:value | 10.1007/978-4-431-54011-3_13 |
132 | ″ | rdf:type | schema:PropertyValue |
133 | Ne62f4744c80045c19817ed3fc3a40c31 | schema:familyName | Go |
134 | ″ | schema:givenName | Yasuhiro |
135 | ″ | rdf:type | schema:Person |
136 | Nf9b4633e698846cdbe2d386638a13612 | schema:familyName | Hirai |
137 | ″ | schema:givenName | Hirohisa |
138 | ″ | rdf:type | schema:Person |
139 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
140 | ″ | schema:name | Biological Sciences |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | anzsrc-for:0603 | schema:inDefinedTermSet | anzsrc-for: |
143 | ″ | schema:name | Evolutionary Biology |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Genetics |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | sg:person.01021645746.17 | schema:affiliation | grid-institutes:grid.7644.1 |
149 | ″ | schema:familyName | Rocchi |
150 | ″ | schema:givenName | Mariano |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021645746.17 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.01171025130.24 | schema:affiliation | grid-institutes:grid.8404.8 |
154 | ″ | schema:familyName | Stanyon |
155 | ″ | schema:givenName | Roscoe |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171025130.24 |
157 | ″ | rdf:type | schema:Person |
158 | sg:person.056410501.58 | schema:affiliation | grid-institutes:grid.7644.1 |
159 | ″ | schema:familyName | Archidiacono |
160 | ″ | schema:givenName | Nicoletta |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.056410501.58 |
162 | ″ | rdf:type | schema:Person |
163 | grid-institutes:grid.7644.1 | schema:alternateName | Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy |
164 | ″ | schema:name | Department of Genetics and Microbiology, University of Bari, Via Amendola 165/A, Bari, Italy |
165 | ″ | rdf:type | schema:Organization |
166 | grid-institutes:grid.8404.8 | schema:alternateName | Laboratory of Anthropology, Department of Evolutionary Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy |
167 | ″ | schema:name | Laboratory of Anthropology, Department of Evolutionary Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy |
168 | ″ | rdf:type | schema:Organization |