What Can Be Learned from Inverse Statistics? View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Peter Toke Heden Ahlgren , Henrik Dahl , Mogens Høgh Jensen , Ingve Simonsen

ABSTRACT

One stylized fact of financial markets is an asymmetry between the most likely time to profit and to loss. This gain–loss asymmetry is revealed by inverse statistics, a method closely related to empirically finding first passage times. Many papers have presented evidence about the asymmetry, where it appears and where it does not. Also, various interpretations and explanations for the results have been suggested. In this chapter, we review the published results and explanations. We also examine the results and show that some are at best fragile. Similarly, we discuss the suggested explanations and propose a new model based on Gaussian mixtures. Apart from explaining the gain–loss asymmetry, this model also has the potential to explain other stylized facts such as volatility clustering, fat tails, and power law behavior of returns. More... »

PAGES

247-270

References to SciGraph publications

  • 1995-07. Scaling behaviour in the dynamics of an economic index in NATURE
  • 2002-06. Optimal investment horizons in THE EUROPEAN PHYSICAL JOURNAL B
  • 2007-05. Fear and its implications for stock markets in THE EUROPEAN PHYSICAL JOURNAL B
  • Book

    TITLE

    Econophysics Approaches to Large-Scale Business Data and Financial Crisis

    ISBN

    978-4-431-53852-3
    978-4-431-53853-0

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-4-431-53853-0_13

    DOI

    http://dx.doi.org/10.1007/978-4-431-53853-0_13

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052756678


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Banking, Finance and Investment", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Commerce, Management, Tourism and Services", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Nykredit Asset Management, Otto M\u00f8nsteds Plads 9, 1780, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ahlgren", 
            "givenName": "Peter Toke Heden", 
            "id": "sg:person.012016537173.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016537173.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Nykredit Asset Management, Otto M\u00f8nsteds Plads 9, 1780, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dahl", 
            "givenName": "Henrik", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Niels Bohr Institute, Blegdamsvej 17, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Mogens H\u00f8gh", 
            "id": "sg:person.01152213267.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Norwegian University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.5947.f", 
              "name": [
                "Department of Physics, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Simonsen", 
            "givenName": "Ingve", 
            "id": "sg:person.01323430537.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323430537.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physreve.82.066113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000691206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.82.066113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000691206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2006.04.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009780833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2005.02.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011677965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4371(02)01884-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012625284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4371(02)01884-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012625284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2007.04.081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015818800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/376046a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024788469", 
              "https://doi.org/10.1038/376046a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4371(99)00617-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027484850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.83.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027694173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.83.76", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027694173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.60.r6295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028448855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.60.r6295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028448855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2007-00125-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028652414", 
              "https://doi.org/10.1140/epjb/e2007-00125-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2006.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030706489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2004.05.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040604474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2002-00193-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043295176", 
              "https://doi.org/10.1140/epjb/e2002-00193-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.021111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045194331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.021111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045194331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.228701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047125596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.228701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047125596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.881555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058127060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5992.906615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061195418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12693/aphyspola.114.569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064620771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3938/jkps.52.517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071748271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511606014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098706575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139170666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104380785"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010", 
        "datePublishedReg": "2010-01-01", 
        "description": "One stylized fact of financial markets is an asymmetry between the most likely time to profit and to loss. This gain\u2013loss asymmetry is revealed by inverse statistics, a method closely related to empirically finding first passage times. Many papers have presented evidence about the asymmetry, where it appears and where it does not. Also, various interpretations and explanations for the results have been suggested. In this chapter, we review the published results and explanations. We also examine the results and show that some are at best fragile. Similarly, we discuss the suggested explanations and propose a new model based on Gaussian mixtures. Apart from explaining the gain\u2013loss asymmetry, this model also has the potential to explain other stylized facts such as volatility clustering, fat tails, and power law behavior of returns.", 
        "editor": [
          {
            "familyName": "Takayasu", 
            "givenName": "Misako", 
            "type": "Person"
          }, 
          {
            "familyName": "Watanabe", 
            "givenName": "Tsutomu", 
            "type": "Person"
          }, 
          {
            "familyName": "Takayasu", 
            "givenName": "Hideki", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-4-431-53853-0_13", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-4-431-53852-3", 
            "978-4-431-53853-0"
          ], 
          "name": "Econophysics Approaches to Large-Scale Business Data and Financial Crisis", 
          "type": "Book"
        }, 
        "name": "What Can Be Learned from Inverse Statistics?", 
        "pagination": "247-270", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052756678"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-4-431-53853-0_13"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb4bea0e8f3de586c5d0262a46ab77c2c86e0717d8478713f97e8e5b9af4f074"
            ]
          }
        ], 
        "publisher": {
          "location": "Tokyo", 
          "name": "Springer Japan", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-4-431-53853-0_13", 
          "https://app.dimensions.ai/details/publication/pub.1052756678"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99328_00000001.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-4-431-53853-0_13"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-53853-0_13'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-53853-0_13'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-53853-0_13'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-53853-0_13'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-4-431-53853-0_13 schema:about anzsrc-for:15
    2 anzsrc-for:1502
    3 schema:author Nbbb343af63d34c6cbeddc06f6083dcd8
    4 schema:citation sg:pub.10.1038/376046a0
    5 sg:pub.10.1140/epjb/e2002-00193-x
    6 sg:pub.10.1140/epjb/e2007-00125-4
    7 https://doi.org/10.1016/j.physa.2004.05.024
    8 https://doi.org/10.1016/j.physa.2005.02.011
    9 https://doi.org/10.1016/j.physa.2006.04.030
    10 https://doi.org/10.1016/j.physa.2006.10.003
    11 https://doi.org/10.1016/j.physa.2007.04.081
    12 https://doi.org/10.1016/s0378-4371(02)01884-8
    13 https://doi.org/10.1016/s0378-4371(99)00617-2
    14 https://doi.org/10.1017/cbo9780511606014
    15 https://doi.org/10.1017/cbo9781139170666
    16 https://doi.org/10.1063/1.881555
    17 https://doi.org/10.1103/physreve.60.r6295
    18 https://doi.org/10.1103/physreve.76.021111
    19 https://doi.org/10.1103/physreve.82.066113
    20 https://doi.org/10.1103/physrevlett.83.76
    21 https://doi.org/10.1103/physrevlett.87.228701
    22 https://doi.org/10.1109/5992.906615
    23 https://doi.org/10.12693/aphyspola.114.569
    24 https://doi.org/10.3938/jkps.52.517
    25 schema:datePublished 2010
    26 schema:datePublishedReg 2010-01-01
    27 schema:description One stylized fact of financial markets is an asymmetry between the most likely time to profit and to loss. This gain–loss asymmetry is revealed by inverse statistics, a method closely related to empirically finding first passage times. Many papers have presented evidence about the asymmetry, where it appears and where it does not. Also, various interpretations and explanations for the results have been suggested. In this chapter, we review the published results and explanations. We also examine the results and show that some are at best fragile. Similarly, we discuss the suggested explanations and propose a new model based on Gaussian mixtures. Apart from explaining the gain–loss asymmetry, this model also has the potential to explain other stylized facts such as volatility clustering, fat tails, and power law behavior of returns.
    28 schema:editor N84f0587c610c40e38c62c4c0414bb9a8
    29 schema:genre chapter
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N29e6a63da8284d23bddb600d645cae04
    33 schema:name What Can Be Learned from Inverse Statistics?
    34 schema:pagination 247-270
    35 schema:productId N096c2e84b80748c4b8d78a4aafcfcce3
    36 N802995535d1e46ca9afb981f60cc727a
    37 Nb32e6b922ada429b884d046d1af034d5
    38 schema:publisher N4878668e8f9c4489ad4797a13c76a9ef
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052756678
    40 https://doi.org/10.1007/978-4-431-53853-0_13
    41 schema:sdDatePublished 2019-04-16T07:38
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N5610118d35dc491e845520a9e2620d95
    44 schema:url https://link.springer.com/10.1007%2F978-4-431-53853-0_13
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset chapters
    47 rdf:type schema:Chapter
    48 N096c2e84b80748c4b8d78a4aafcfcce3 schema:name doi
    49 schema:value 10.1007/978-4-431-53853-0_13
    50 rdf:type schema:PropertyValue
    51 N123fec546bfd41289e3086e0ad3054ed schema:familyName Takayasu
    52 schema:givenName Hideki
    53 rdf:type schema:Person
    54 N29e6a63da8284d23bddb600d645cae04 schema:isbn 978-4-431-53852-3
    55 978-4-431-53853-0
    56 schema:name Econophysics Approaches to Large-Scale Business Data and Financial Crisis
    57 rdf:type schema:Book
    58 N3bceb97dcc4245a9a9c9b192beab0ecb rdf:first N6066e5cf985a49889fd6fb6f53d053ee
    59 rdf:rest Nb1fb0d6ec79b4e16a9cd5777648aef8e
    60 N455c500f00b648a69ed717e865acfdc9 rdf:first N123fec546bfd41289e3086e0ad3054ed
    61 rdf:rest rdf:nil
    62 N4878668e8f9c4489ad4797a13c76a9ef schema:location Tokyo
    63 schema:name Springer Japan
    64 rdf:type schema:Organisation
    65 N5610118d35dc491e845520a9e2620d95 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N60144dbbbb51443e8d7bdd0102367047 schema:familyName Watanabe
    68 schema:givenName Tsutomu
    69 rdf:type schema:Person
    70 N6066e5cf985a49889fd6fb6f53d053ee schema:affiliation Nc6bcce5fad8f446393be0a4b9eb8a33b
    71 schema:familyName Dahl
    72 schema:givenName Henrik
    73 rdf:type schema:Person
    74 N802995535d1e46ca9afb981f60cc727a schema:name dimensions_id
    75 schema:value pub.1052756678
    76 rdf:type schema:PropertyValue
    77 N84f0587c610c40e38c62c4c0414bb9a8 rdf:first Nd02d2f9aa287418f86b4d386b79bc849
    78 rdf:rest Ndb6dcd42679243b080c2fb516017202c
    79 N9fa7e98de24041e886234dd96201f91f rdf:first sg:person.01323430537.25
    80 rdf:rest rdf:nil
    81 Nb1fb0d6ec79b4e16a9cd5777648aef8e rdf:first sg:person.01152213267.83
    82 rdf:rest N9fa7e98de24041e886234dd96201f91f
    83 Nb32e6b922ada429b884d046d1af034d5 schema:name readcube_id
    84 schema:value fb4bea0e8f3de586c5d0262a46ab77c2c86e0717d8478713f97e8e5b9af4f074
    85 rdf:type schema:PropertyValue
    86 Nbbb343af63d34c6cbeddc06f6083dcd8 rdf:first sg:person.012016537173.14
    87 rdf:rest N3bceb97dcc4245a9a9c9b192beab0ecb
    88 Nc3b9879bac9442438c2f646d2e2f8ffa schema:name Nykredit Asset Management, Otto Mønsteds Plads 9, 1780, Copenhagen, Denmark
    89 rdf:type schema:Organization
    90 Nc6bcce5fad8f446393be0a4b9eb8a33b schema:name Nykredit Asset Management, Otto Mønsteds Plads 9, 1780, Copenhagen, Denmark
    91 rdf:type schema:Organization
    92 Nd02d2f9aa287418f86b4d386b79bc849 schema:familyName Takayasu
    93 schema:givenName Misako
    94 rdf:type schema:Person
    95 Ndb6dcd42679243b080c2fb516017202c rdf:first N60144dbbbb51443e8d7bdd0102367047
    96 rdf:rest N455c500f00b648a69ed717e865acfdc9
    97 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Commerce, Management, Tourism and Services
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Banking, Finance and Investment
    102 rdf:type schema:DefinedTerm
    103 sg:person.01152213267.83 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    104 schema:familyName Jensen
    105 schema:givenName Mogens Høgh
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83
    107 rdf:type schema:Person
    108 sg:person.012016537173.14 schema:affiliation Nc3b9879bac9442438c2f646d2e2f8ffa
    109 schema:familyName Ahlgren
    110 schema:givenName Peter Toke Heden
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016537173.14
    112 rdf:type schema:Person
    113 sg:person.01323430537.25 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
    114 schema:familyName Simonsen
    115 schema:givenName Ingve
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323430537.25
    117 rdf:type schema:Person
    118 sg:pub.10.1038/376046a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024788469
    119 https://doi.org/10.1038/376046a0
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1140/epjb/e2002-00193-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043295176
    122 https://doi.org/10.1140/epjb/e2002-00193-x
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1140/epjb/e2007-00125-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028652414
    125 https://doi.org/10.1140/epjb/e2007-00125-4
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.physa.2004.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040604474
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.physa.2005.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011677965
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.physa.2006.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009780833
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.physa.2006.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030706489
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.physa.2007.04.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015818800
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/s0378-4371(02)01884-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012625284
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/s0378-4371(99)00617-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027484850
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1017/cbo9780511606014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098706575
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1017/cbo9781139170666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104380785
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1063/1.881555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127060
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physreve.60.r6295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028448855
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physreve.76.021111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045194331
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physreve.82.066113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000691206
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevlett.83.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027694173
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1103/physrevlett.87.228701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047125596
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/5992.906615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061195418
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.12693/aphyspola.114.569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064620771
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.3938/jkps.52.517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071748271
    162 rdf:type schema:CreativeWork
    163 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
    164 schema:name Niels Bohr Institute, Blegdamsvej 17, 2100, Copenhagen, Denmark
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
    167 schema:name Department of Physics, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...