2007-01-01
AUTHORSUmpei Nagashima , Tohru Sasaki , Masaru Tsukada
ABSTRACTSTM (Scanning Tunneling Microscopy) is a kind of Scanning Probing Microscopy such as AFM, KFM etc, and they are powerful tools for surface analysis. Especially STM can observe the surface electronic structure of sample. But it does not directly observe atoms on the surface. Therefore it is important that STM images are compared with simulation images.In view of this situation, we are developing STM simulator, which calculates the tunnel current in Tip-Surface system on each pixel point with given bias voltage.The STM simulator is implemented with LCAO scheme, and we have another plan with Plane Wave basis scheme as CP (Car-Parrinello) method. In the latter case, large scale 3D-FFT calculation is necessary. Then we have made a prototype of reconfigurable hardware acceleration engine.We introduce the outline of STM simulator and a 3D-FFT accelerator for CP method in this paper. More... »
PAGES352-356
Systems Modeling and Simulation
ISBN
978-4-431-49021-0
978-4-431-49022-7
http://scigraph.springernature.com/pub.10.1007/978-4-431-49022-7_71
DOIhttp://dx.doi.org/10.1007/978-4-431-49022-7_71
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037166015
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, 305-8568, Tsukuba, Ibaraki, Japan",
"id": "http://www.grid.ac/institutes/grid.208504.b",
"name": [
"Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, 305-8568, Tsukuba, Ibaraki, Japan"
],
"type": "Organization"
},
"familyName": "Nagashima",
"givenName": "Umpei",
"id": "sg:person.0643621411.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643621411.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "A Priori Microsystems, Inc, 1102, 4-51-1 Nakasaiwai-cho, Saiwai-ku, 212-0012, Kawasaki, Kanagawa, Japan",
"id": "http://www.grid.ac/institutes/None",
"name": [
"A Priori Microsystems, Inc, 1102, 4-51-1 Nakasaiwai-cho, Saiwai-ku, 212-0012, Kawasaki, Kanagawa, Japan"
],
"type": "Organization"
},
"familyName": "Sasaki",
"givenName": "Tohru",
"id": "sg:person.011007420463.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007420463.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Nano-science and Nano-engineering, Graduate School of Science and Engineering Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.5290.e",
"name": [
"Department of Nano-science and Nano-engineering, Graduate School of Science and Engineering Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Tsukada",
"givenName": "Masaru",
"id": "sg:person.016242434421.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06"
],
"type": "Person"
}
],
"datePublished": "2007-01-01",
"datePublishedReg": "2007-01-01",
"description": "STM (Scanning Tunneling Microscopy) is a kind of Scanning Probing Microscopy such as AFM, KFM etc, and they are powerful tools for surface analysis. Especially STM can observe the surface electronic structure of sample. But it does not directly observe atoms on the surface. Therefore it is important that STM images are compared with simulation images.In view of this situation, we are developing STM simulator, which calculates the tunnel current in Tip-Surface system on each pixel point with given bias voltage.The STM simulator is implemented with LCAO scheme, and we have another plan with Plane Wave basis scheme as CP (Car-Parrinello) method. In the latter case, large scale 3D-FFT calculation is necessary. Then we have made a prototype of reconfigurable hardware acceleration engine.We introduce the outline of STM simulator and a 3D-FFT accelerator for CP method in this paper.",
"editor": [
{
"familyName": "Koyamada",
"givenName": "Koji",
"type": "Person"
},
{
"familyName": "Tamura",
"givenName": "Shinsuke",
"type": "Person"
},
{
"familyName": "Ono",
"givenName": "Osamu",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-4-431-49022-7_71",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-4-431-49021-0",
"978-4-431-49022-7"
],
"name": "Systems Modeling and Simulation",
"type": "Book"
},
"keywords": [
"acceleration engine",
"kind of scanning",
"pixel points",
"simulation images",
"FFT calculation",
"simulator",
"simulation techniques",
"CP method",
"images",
"scheme",
"large scale",
"powerful tool",
"prototype",
"engine",
"accelerator",
"tool",
"basis scheme",
"method",
"system",
"technique",
"kind",
"tip-surface system",
"situation",
"surface analysis",
"view",
"plan",
"outline",
"bias voltage",
"point",
"analysis",
"tunnel current",
"scanning",
"latter case",
"surface electronic structure",
"KFM",
"structure",
"voltage",
"cases",
"AFM",
"current",
"scale",
"LCAO scheme",
"surface",
"microscopy",
"STM",
"electronic structure",
"calculations",
"STM images",
"samples",
"atoms",
"paper"
],
"name": "Some Simulation Techniques for Surface Analysis",
"pagination": "352-356",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037166015"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-4-431-49022-7_71"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-4-431-49022-7_71",
"https://app.dimensions.ai/details/publication/pub.1037166015"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:46",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_330.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-4-431-49022-7_71"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-49022-7_71'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-49022-7_71'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-49022-7_71'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-49022-7_71'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
23 PREDICATES
78 URIs
69 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-4-431-49022-7_71 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | ″ | anzsrc-for:08 |
4 | ″ | ″ | anzsrc-for:0801 |
5 | ″ | schema:author | Nbf46bca1e0d543d5b0f881614750ddd8 |
6 | ″ | schema:datePublished | 2007-01-01 |
7 | ″ | schema:datePublishedReg | 2007-01-01 |
8 | ″ | schema:description | STM (Scanning Tunneling Microscopy) is a kind of Scanning Probing Microscopy such as AFM, KFM etc, and they are powerful tools for surface analysis. Especially STM can observe the surface electronic structure of sample. But it does not directly observe atoms on the surface. Therefore it is important that STM images are compared with simulation images.In view of this situation, we are developing STM simulator, which calculates the tunnel current in Tip-Surface system on each pixel point with given bias voltage.The STM simulator is implemented with LCAO scheme, and we have another plan with Plane Wave basis scheme as CP (Car-Parrinello) method. In the latter case, large scale 3D-FFT calculation is necessary. Then we have made a prototype of reconfigurable hardware acceleration engine.We introduce the outline of STM simulator and a 3D-FFT accelerator for CP method in this paper. |
9 | ″ | schema:editor | N2aad3ad3af6f4730aa569a0297a14019 |
10 | ″ | schema:genre | chapter |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N9712c92a393c413d9cedbbacc5ce4a89 |
14 | ″ | schema:keywords | AFM |
15 | ″ | ″ | CP method |
16 | ″ | ″ | FFT calculation |
17 | ″ | ″ | KFM |
18 | ″ | ″ | LCAO scheme |
19 | ″ | ″ | STM |
20 | ″ | ″ | STM images |
21 | ″ | ″ | acceleration engine |
22 | ″ | ″ | accelerator |
23 | ″ | ″ | analysis |
24 | ″ | ″ | atoms |
25 | ″ | ″ | basis scheme |
26 | ″ | ″ | bias voltage |
27 | ″ | ″ | calculations |
28 | ″ | ″ | cases |
29 | ″ | ″ | current |
30 | ″ | ″ | electronic structure |
31 | ″ | ″ | engine |
32 | ″ | ″ | images |
33 | ″ | ″ | kind |
34 | ″ | ″ | kind of scanning |
35 | ″ | ″ | large scale |
36 | ″ | ″ | latter case |
37 | ″ | ″ | method |
38 | ″ | ″ | microscopy |
39 | ″ | ″ | outline |
40 | ″ | ″ | paper |
41 | ″ | ″ | pixel points |
42 | ″ | ″ | plan |
43 | ″ | ″ | point |
44 | ″ | ″ | powerful tool |
45 | ″ | ″ | prototype |
46 | ″ | ″ | samples |
47 | ″ | ″ | scale |
48 | ″ | ″ | scanning |
49 | ″ | ″ | scheme |
50 | ″ | ″ | simulation images |
51 | ″ | ″ | simulation techniques |
52 | ″ | ″ | simulator |
53 | ″ | ″ | situation |
54 | ″ | ″ | structure |
55 | ″ | ″ | surface |
56 | ″ | ″ | surface analysis |
57 | ″ | ″ | surface electronic structure |
58 | ″ | ″ | system |
59 | ″ | ″ | technique |
60 | ″ | ″ | tip-surface system |
61 | ″ | ″ | tool |
62 | ″ | ″ | tunnel current |
63 | ″ | ″ | view |
64 | ″ | ″ | voltage |
65 | ″ | schema:name | Some Simulation Techniques for Surface Analysis |
66 | ″ | schema:pagination | 352-356 |
67 | ″ | schema:productId | N86ec06106eb94fe0926d71b427bdbd68 |
68 | ″ | ″ | Ne5ce7760876948ca9be0945ba6bfb99e |
69 | ″ | schema:publisher | Nd8b85a68bbaa48dfbea3d70afefc8efe |
70 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037166015 |
71 | ″ | ″ | https://doi.org/10.1007/978-4-431-49022-7_71 |
72 | ″ | schema:sdDatePublished | 2022-05-20T07:46 |
73 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
74 | ″ | schema:sdPublisher | Ne3cb33d55d86427cb7ea0e739cd4250f |
75 | ″ | schema:url | https://doi.org/10.1007/978-4-431-49022-7_71 |
76 | ″ | sgo:license | sg:explorer/license/ |
77 | ″ | sgo:sdDataset | chapters |
78 | ″ | rdf:type | schema:Chapter |
79 | N0c243483e71b4623ad69ff007af0b6d6 | rdf:first | sg:person.016242434421.06 |
80 | ″ | rdf:rest | rdf:nil |
81 | N1d743862c3184f33b84e75fba85bc58d | schema:familyName | Ono |
82 | ″ | schema:givenName | Osamu |
83 | ″ | rdf:type | schema:Person |
84 | N28c5d9f049ac4331ba52b158e3adbeb6 | rdf:first | N1d743862c3184f33b84e75fba85bc58d |
85 | ″ | rdf:rest | rdf:nil |
86 | N2aad3ad3af6f4730aa569a0297a14019 | rdf:first | N86c3476bff634a9a9977f03b0d5e4ed4 |
87 | ″ | rdf:rest | N7614e883676445aaa8eb6d8b1c627aab |
88 | N50d61171f5454db4aba70727a3fc70ce | schema:familyName | Tamura |
89 | ″ | schema:givenName | Shinsuke |
90 | ″ | rdf:type | schema:Person |
91 | N7614e883676445aaa8eb6d8b1c627aab | rdf:first | N50d61171f5454db4aba70727a3fc70ce |
92 | ″ | rdf:rest | N28c5d9f049ac4331ba52b158e3adbeb6 |
93 | N86c3476bff634a9a9977f03b0d5e4ed4 | schema:familyName | Koyamada |
94 | ″ | schema:givenName | Koji |
95 | ″ | rdf:type | schema:Person |
96 | N86ec06106eb94fe0926d71b427bdbd68 | schema:name | dimensions_id |
97 | ″ | schema:value | pub.1037166015 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N9712c92a393c413d9cedbbacc5ce4a89 | schema:isbn | 978-4-431-49021-0 |
100 | ″ | ″ | 978-4-431-49022-7 |
101 | ″ | schema:name | Systems Modeling and Simulation |
102 | ″ | rdf:type | schema:Book |
103 | Nb7d84cff15034718a58c4b61a96d5b65 | rdf:first | sg:person.011007420463.39 |
104 | ″ | rdf:rest | N0c243483e71b4623ad69ff007af0b6d6 |
105 | Nbf46bca1e0d543d5b0f881614750ddd8 | rdf:first | sg:person.0643621411.69 |
106 | ″ | rdf:rest | Nb7d84cff15034718a58c4b61a96d5b65 |
107 | Nd8b85a68bbaa48dfbea3d70afefc8efe | schema:name | Springer Nature |
108 | ″ | rdf:type | schema:Organisation |
109 | Ne3cb33d55d86427cb7ea0e739cd4250f | schema:name | Springer Nature - SN SciGraph project |
110 | ″ | rdf:type | schema:Organization |
111 | Ne5ce7760876948ca9be0945ba6bfb99e | schema:name | doi |
112 | ″ | schema:value | 10.1007/978-4-431-49022-7_71 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Physical Sciences |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Other Physical Sciences |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Information and Computing Sciences |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Artificial Intelligence and Image Processing |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | sg:person.011007420463.39 | schema:affiliation | grid-institutes:None |
127 | ″ | schema:familyName | Sasaki |
128 | ″ | schema:givenName | Tohru |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007420463.39 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.016242434421.06 | schema:affiliation | grid-institutes:grid.5290.e |
132 | ″ | schema:familyName | Tsukada |
133 | ″ | schema:givenName | Masaru |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242434421.06 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.0643621411.69 | schema:affiliation | grid-institutes:grid.208504.b |
137 | ″ | schema:familyName | Nagashima |
138 | ″ | schema:givenName | Umpei |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643621411.69 |
140 | ″ | rdf:type | schema:Person |
141 | grid-institutes:None | schema:alternateName | A Priori Microsystems, Inc, 1102, 4-51-1 Nakasaiwai-cho, Saiwai-ku, 212-0012, Kawasaki, Kanagawa, Japan |
142 | ″ | schema:name | A Priori Microsystems, Inc, 1102, 4-51-1 Nakasaiwai-cho, Saiwai-ku, 212-0012, Kawasaki, Kanagawa, Japan |
143 | ″ | rdf:type | schema:Organization |
144 | grid-institutes:grid.208504.b | schema:alternateName | Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, 305-8568, Tsukuba, Ibaraki, Japan |
145 | ″ | schema:name | Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, 305-8568, Tsukuba, Ibaraki, Japan |
146 | ″ | rdf:type | schema:Organization |
147 | grid-institutes:grid.5290.e | schema:alternateName | Department of Nano-science and Nano-engineering, Graduate School of Science and Engineering Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan |
148 | ″ | schema:name | Department of Nano-science and Nano-engineering, Graduate School of Science and Engineering Waseda University, 513 Waseda Tsurumaki-cho, Shinjuku-ku, 162-0041, Tokyo, Japan |
149 | ″ | rdf:type | schema:Organization |