Muscle Contraction Mechanism Based on Actin Filament Rotation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Toshio Yanagida

ABSTRACT

Muscle contraction is caused by relative sliding movement between interdigitating actin and myosin filaments. It has been thought that myosin heads protruding from the myosin filament rotate between two orientations, while they repeat detachment from and attachment to actin filament coupled to the ATP hydrolysis cycle and the rotation of the head may cause the sliding. Recently atomic structure obtained from X-ray crystallography supports the rotation of the myosin head relative to the actin filament. A small conformational change in the ATP binding domain is transmitted to a neck domain that connects a motor domain (head) and tail domain, depending on the chemical state of nucleotide bound. Thus the neck domain acts as a lever-arm that can cause a displacement of 5–10 nm for the muscle myosin. This lever-arm swinging model has been a paradigm not only for the muscle myosin but also for unconventional myosins. Large stepsize of unconventional processive myosin V motor can be explained by its large lever arm within the frame of the lever-arm swinging model. More... »

PAGES

359-367

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-4-431-38453-3_30

DOI

http://dx.doi.org/10.1007/978-4-431-38453-3_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027207185

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17278379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescence Resonance Energy Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myosins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Department of Biophysical Engineering, Osaka University, Soft Biosystem Group, Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, 565-0871, Suita, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Department of Biophysical Engineering, Osaka University, Soft Biosystem Group, Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, 565-0871, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagida", 
        "givenName": "Toshio", 
        "id": "sg:person.015141357621.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "Muscle contraction is caused by relative sliding movement between interdigitating actin and myosin filaments. It has been thought that myosin heads protruding from the myosin filament rotate between two orientations, while they repeat detachment from and attachment to actin filament coupled to the ATP hydrolysis cycle and the rotation of the head may cause the sliding. Recently atomic structure obtained from X-ray crystallography supports the rotation of the myosin head relative to the actin filament. A small conformational change in the ATP binding domain is transmitted to a neck domain that connects a motor domain (head) and tail domain, depending on the chemical state of nucleotide bound. Thus the neck domain acts as a lever-arm that can cause a displacement of 5\u201310 nm for the muscle myosin. This lever-arm swinging model has been a paradigm not only for the muscle myosin but also for unconventional myosins. Large stepsize of unconventional processive myosin V motor can be explained by its large lever arm within the frame of the lever-arm swinging model.", 
    "editor": [
      {
        "familyName": "Ebashi", 
        "givenName": "Setsuro", 
        "type": "Person"
      }, 
      {
        "familyName": "Ohtsuki", 
        "givenName": "Iwao", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-4-431-38453-3_30", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-4-431-38451-9", 
        "978-4-431-38453-3"
      ], 
      "name": "Regulatory Mechanisms of Striated Muscle Contraction", 
      "type": "Book"
    }, 
    "keywords": [
      "muscle contraction", 
      "muscle myosin", 
      "muscle contraction mechanism", 
      "large lever arm", 
      "neck domain", 
      "head", 
      "contraction mechanism", 
      "lever arm", 
      "myosin", 
      "motor domain", 
      "contraction", 
      "arm", 
      "myosin heads", 
      "unconventional myosin", 
      "myosin filaments", 
      "detachment", 
      "ATP", 
      "actin filaments", 
      "changes", 
      "tail domain", 
      "mechanism", 
      "nucleotides", 
      "filaments", 
      "movement", 
      "attachment", 
      "model", 
      "motor", 
      "domain", 
      "ATP hydrolysis cycle", 
      "cycle", 
      "rotation", 
      "paradigm", 
      "myosin V motors", 
      "small conformational changes", 
      "state", 
      "hydrolysis cycle", 
      "conformational changes", 
      "X-ray crystallography", 
      "displacement", 
      "frame", 
      "filament rotation", 
      "crystallography", 
      "structure", 
      "orientation", 
      "atomic structure", 
      "rotates", 
      "sliding", 
      "chemical state", 
      "stepsize", 
      "larger stepsize"
    ], 
    "name": "Muscle Contraction Mechanism Based on Actin Filament Rotation", 
    "pagination": "359-367", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027207185"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-4-431-38453-3_30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17278379"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-4-431-38453-3_30", 
      "https://app.dimensions.ai/details/publication/pub.1027207185"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_47.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-4-431-38453-3_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-38453-3_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-38453-3_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-38453-3_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-38453-3_30'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      82 URIs      75 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-4-431-38453-3_30 schema:about N0789a5b02280418a9c31f6dc8a4c4076
2 N0f103a3a0ad54afb917f40f74dbcba5a
3 N17febe99655b41fab8dcc4025e172a90
4 N2bd60a2ffe8040fea081b43083953c23
5 N8e624152b2bb4d86a48cd6a6c78afe47
6 Ncde568dcb12342fcaf7d3e286811c75e
7 anzsrc-for:11
8 anzsrc-for:1116
9 schema:author N76218d42d1144cedb9b22da073c5300f
10 schema:datePublished 2007
11 schema:datePublishedReg 2007-01-01
12 schema:description Muscle contraction is caused by relative sliding movement between interdigitating actin and myosin filaments. It has been thought that myosin heads protruding from the myosin filament rotate between two orientations, while they repeat detachment from and attachment to actin filament coupled to the ATP hydrolysis cycle and the rotation of the head may cause the sliding. Recently atomic structure obtained from X-ray crystallography supports the rotation of the myosin head relative to the actin filament. A small conformational change in the ATP binding domain is transmitted to a neck domain that connects a motor domain (head) and tail domain, depending on the chemical state of nucleotide bound. Thus the neck domain acts as a lever-arm that can cause a displacement of 5–10 nm for the muscle myosin. This lever-arm swinging model has been a paradigm not only for the muscle myosin but also for unconventional myosins. Large stepsize of unconventional processive myosin V motor can be explained by its large lever arm within the frame of the lever-arm swinging model.
13 schema:editor N792647986abc4d2c803b49b76c8cb2a9
14 schema:genre chapter
15 schema:isAccessibleForFree false
16 schema:isPartOf Nb2c6cc29ab4c4d39ad46a2775256671f
17 schema:keywords ATP
18 ATP hydrolysis cycle
19 X-ray crystallography
20 actin filaments
21 arm
22 atomic structure
23 attachment
24 changes
25 chemical state
26 conformational changes
27 contraction
28 contraction mechanism
29 crystallography
30 cycle
31 detachment
32 displacement
33 domain
34 filament rotation
35 filaments
36 frame
37 head
38 hydrolysis cycle
39 large lever arm
40 larger stepsize
41 lever arm
42 mechanism
43 model
44 motor
45 motor domain
46 movement
47 muscle contraction
48 muscle contraction mechanism
49 muscle myosin
50 myosin
51 myosin V motors
52 myosin filaments
53 myosin heads
54 neck domain
55 nucleotides
56 orientation
57 paradigm
58 rotates
59 rotation
60 sliding
61 small conformational changes
62 state
63 stepsize
64 structure
65 tail domain
66 unconventional myosin
67 schema:name Muscle Contraction Mechanism Based on Actin Filament Rotation
68 schema:pagination 359-367
69 schema:productId N6f994b4c41c3437a898e124be0682669
70 Na312a923071a4e1f8bb60f8a80f3dedb
71 Nc33de9bf5d394da8aaf085f1735f91c0
72 schema:publisher Ndca91258832044148b5fe60ee5d0a6a4
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027207185
74 https://doi.org/10.1007/978-4-431-38453-3_30
75 schema:sdDatePublished 2022-09-02T16:17
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nbecb524d6e67420b8fef42919049a874
78 schema:url https://doi.org/10.1007/978-4-431-38453-3_30
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N0789a5b02280418a9c31f6dc8a4c4076 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Muscle Contraction
84 rdf:type schema:DefinedTerm
85 N0f103a3a0ad54afb917f40f74dbcba5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Fluorescence Resonance Energy Transfer
87 rdf:type schema:DefinedTerm
88 N0f4d1b217a6e49a8801d4f62619a56ee schema:familyName Ebashi
89 schema:givenName Setsuro
90 rdf:type schema:Person
91 N17febe99655b41fab8dcc4025e172a90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Myosins
93 rdf:type schema:DefinedTerm
94 N2bd60a2ffe8040fea081b43083953c23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Actins
96 rdf:type schema:DefinedTerm
97 N6f994b4c41c3437a898e124be0682669 schema:name doi
98 schema:value 10.1007/978-4-431-38453-3_30
99 rdf:type schema:PropertyValue
100 N76218d42d1144cedb9b22da073c5300f rdf:first sg:person.015141357621.93
101 rdf:rest rdf:nil
102 N792647986abc4d2c803b49b76c8cb2a9 rdf:first N0f4d1b217a6e49a8801d4f62619a56ee
103 rdf:rest Nf678382d57cf4fc68785c1bdfdcbaa37
104 N8e624152b2bb4d86a48cd6a6c78afe47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 Na312a923071a4e1f8bb60f8a80f3dedb schema:name dimensions_id
108 schema:value pub.1027207185
109 rdf:type schema:PropertyValue
110 Nb2c6cc29ab4c4d39ad46a2775256671f schema:isbn 978-4-431-38451-9
111 978-4-431-38453-3
112 schema:name Regulatory Mechanisms of Striated Muscle Contraction
113 rdf:type schema:Book
114 Nbecb524d6e67420b8fef42919049a874 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Nc33de9bf5d394da8aaf085f1735f91c0 schema:name pubmed_id
117 schema:value 17278379
118 rdf:type schema:PropertyValue
119 Ncde568dcb12342fcaf7d3e286811c75e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Animals
121 rdf:type schema:DefinedTerm
122 Ndca91258832044148b5fe60ee5d0a6a4 schema:name Springer Nature
123 rdf:type schema:Organisation
124 Nf678382d57cf4fc68785c1bdfdcbaa37 rdf:first Nfe6fe881fc3d4ff79a8713854a73923a
125 rdf:rest rdf:nil
126 Nfe6fe881fc3d4ff79a8713854a73923a schema:familyName Ohtsuki
127 schema:givenName Iwao
128 rdf:type schema:Person
129 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
130 schema:name Medical and Health Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical Physiology
134 rdf:type schema:DefinedTerm
135 sg:person.015141357621.93 schema:affiliation grid-institutes:grid.136593.b
136 schema:familyName Yanagida
137 schema:givenName Toshio
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93
139 rdf:type schema:Person
140 grid-institutes:grid.136593.b schema:alternateName Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Department of Biophysical Engineering, Osaka University, Soft Biosystem Group, Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, 565-0871, Suita, Osaka, Japan
141 schema:name Formation of Soft Nanomachines, Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Department of Biophysical Engineering, Osaka University, Soft Biosystem Group, Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, 565-0871, Suita, Osaka, Japan
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...