MEG Single-event Analysis: Networks for Normal Brain Function and Their Changes in Schizophrenia View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Andreas A. Ioannides

ABSTRACT

Modern instrumentation offers the capability to capture in an instance the magnetic field around the head. There is agreement that the measurements are responsive to instantaneous changes of the current density inside the head, corresponding, at least partially, to neuronal events elicited by the stimuli and/or the task. There is however disagreement about the information that can be usefully extracted from the data. On the one hand theoretical arguments can be given why unambiguous reconstructions of generators from the data are impossible. On the other hand evidence has been gathering that surprisingly accurate information can be extracted from the data under minimal assumptions. Here we outline magnetic field tomography (MFT), a method for obtaining tomographic descriptions of brain activity from biomagnetic data. We show that if the underlying physics laws and biological complexity are to be respected then the non-linear reconstruction algorithm of MFT must be selected over the simpler minimum norm or other algorithms. Drawing on the enormous dynamic range of the measurements and the richness of information in the single trial data, MFT provides unique insights into brain function, as demonstrated by a detailed study of the brain activity and interactions elicited by a facial recognition task in healthy and schizophrenic subjects. More... »

PAGES

361-374

Book

TITLE

Complex Medical Engineering

ISBN

978-4-431-30961-1
978-4-431-30962-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-4-431-30962-8_31

DOI

http://dx.doi.org/10.1007/978-4-431-30962-8_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019457133


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratory for Human Brain Dynamics, RIKEN Brain Science Institue (BSI), 2-1 Hirosawa, Wakoshi, Saitama\u00a0351-0198, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannides", 
        "givenName": "Andreas A.", 
        "id": "sg:person.0600434417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/andp.18531650603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006835116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1091-05.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015109357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018706602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhg091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025790514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2003.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028325585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6123(04)48012-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031820059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022258620435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034352216", 
          "https://doi.org/10.1023/a:1022258620435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0193(200010)11:2<77::aid-hbm20>3.0.co;2-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035535644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(02)00053-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041743911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/6/4/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041998952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00367-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045636136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-8119(03)00367-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045636136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0173(99)00027-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047957768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-4694(97)00068-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048763421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.759120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1176/appi.ajp.158.9.1429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063494099"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "Modern instrumentation offers the capability to capture in an instance the magnetic field around the head. There is agreement that the measurements are responsive to instantaneous changes of the current density inside the head, corresponding, at least partially, to neuronal events elicited by the stimuli and/or the task. There is however disagreement about the information that can be usefully extracted from the data. On the one hand theoretical arguments can be given why unambiguous reconstructions of generators from the data are impossible. On the other hand evidence has been gathering that surprisingly accurate information can be extracted from the data under minimal assumptions. Here we outline magnetic field tomography (MFT), a method for obtaining tomographic descriptions of brain activity from biomagnetic data. We show that if the underlying physics laws and biological complexity are to be respected then the non-linear reconstruction algorithm of MFT must be selected over the simpler minimum norm or other algorithms. Drawing on the enormous dynamic range of the measurements and the richness of information in the single trial data, MFT provides unique insights into brain function, as demonstrated by a detailed study of the brain activity and interactions elicited by a facial recognition task in healthy and schizophrenic subjects.", 
    "editor": [
      {
        "familyName": "Wu", 
        "givenName": "Jing Long", 
        "type": "Person"
      }, 
      {
        "familyName": "Ito", 
        "givenName": "Koji", 
        "type": "Person"
      }, 
      {
        "familyName": "Tobimatsu", 
        "givenName": "Shozo", 
        "type": "Person"
      }, 
      {
        "familyName": "Nishida", 
        "givenName": "Toyoaki", 
        "type": "Person"
      }, 
      {
        "familyName": "Fukuyama", 
        "givenName": "Hidenao", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-4-431-30962-8_31", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-4-431-30961-1", 
        "978-4-431-30962-8"
      ], 
      "name": "Complex Medical Engineering", 
      "type": "Book"
    }, 
    "name": "MEG Single-event Analysis: Networks for Normal Brain Function and Their Changes in Schizophrenia", 
    "pagination": "361-374", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-4-431-30962-8_31"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5cb4d09f7911b7774c1e80d1986e43e99f596004ce2061ebe6c1a74cfe5940d3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019457133"
        ]
      }
    ], 
    "publisher": {
      "location": "Tokyo", 
      "name": "Springer Japan", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-4-431-30962-8_31", 
      "https://app.dimensions.ai/details/publication/pub.1019457133"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-4-431-30962-8_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-30962-8_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-30962-8_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-30962-8_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-4-431-30962-8_31'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-4-431-30962-8_31 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N8ec09ed0902a4f5191d314c3eaef885e
4 schema:citation sg:pub.10.1023/a:1022258620435
5 https://doi.org/10.1002/1097-0193(200010)11:2<77::aid-hbm20>3.0.co;2-0
6 https://doi.org/10.1002/andp.18531650603
7 https://doi.org/10.1016/j.neuroimage.2003.12.018
8 https://doi.org/10.1016/j.neuroimage.2004.06.023
9 https://doi.org/10.1016/s0013-4694(97)00068-0
10 https://doi.org/10.1016/s0079-6123(04)48012-1
11 https://doi.org/10.1016/s0165-0173(99)00027-2
12 https://doi.org/10.1016/s1053-8119(02)00053-8
13 https://doi.org/10.1016/s1053-8119(03)00367-7
14 https://doi.org/10.1088/0266-5611/6/4/005
15 https://doi.org/10.1093/cercor/bhg091
16 https://doi.org/10.1109/42.759120
17 https://doi.org/10.1176/appi.ajp.158.9.1429
18 https://doi.org/10.1523/jneurosci.1091-05.2005
19 schema:datePublished 2007
20 schema:datePublishedReg 2007-01-01
21 schema:description Modern instrumentation offers the capability to capture in an instance the magnetic field around the head. There is agreement that the measurements are responsive to instantaneous changes of the current density inside the head, corresponding, at least partially, to neuronal events elicited by the stimuli and/or the task. There is however disagreement about the information that can be usefully extracted from the data. On the one hand theoretical arguments can be given why unambiguous reconstructions of generators from the data are impossible. On the other hand evidence has been gathering that surprisingly accurate information can be extracted from the data under minimal assumptions. Here we outline magnetic field tomography (MFT), a method for obtaining tomographic descriptions of brain activity from biomagnetic data. We show that if the underlying physics laws and biological complexity are to be respected then the non-linear reconstruction algorithm of MFT must be selected over the simpler minimum norm or other algorithms. Drawing on the enormous dynamic range of the measurements and the richness of information in the single trial data, MFT provides unique insights into brain function, as demonstrated by a detailed study of the brain activity and interactions elicited by a facial recognition task in healthy and schizophrenic subjects.
22 schema:editor Ne4168f9c4c0a4af1a5bf1081387ed0b3
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N9f86f7bdda9d4861a6c5befd2f77ef83
27 schema:name MEG Single-event Analysis: Networks for Normal Brain Function and Their Changes in Schizophrenia
28 schema:pagination 361-374
29 schema:productId N62f3a80bafe14edab2888445437f8f22
30 N6f4f5c1824cb4d74b08974bad69cb3a4
31 N9f5b85293e224f00988ede7476a16c2c
32 schema:publisher N761f6696538f4652874a93836993ef47
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019457133
34 https://doi.org/10.1007/978-4-431-30962-8_31
35 schema:sdDatePublished 2019-04-15T14:24
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N167fce837add47e3a986658e4101d5cb
38 schema:url http://link.springer.com/10.1007/978-4-431-30962-8_31
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N1370f343164f488a9256287516535ff3 schema:familyName Nishida
43 schema:givenName Toyoaki
44 rdf:type schema:Person
45 N167fce837add47e3a986658e4101d5cb schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N1e70add2cec146b4b02cda4d615306a6 schema:name Laboratory for Human Brain Dynamics, RIKEN Brain Science Institue (BSI), 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
48 rdf:type schema:Organization
49 N62f3a80bafe14edab2888445437f8f22 schema:name doi
50 schema:value 10.1007/978-4-431-30962-8_31
51 rdf:type schema:PropertyValue
52 N6f4f5c1824cb4d74b08974bad69cb3a4 schema:name dimensions_id
53 schema:value pub.1019457133
54 rdf:type schema:PropertyValue
55 N7536fc50cd5a4ae48b38ca27065b28b3 rdf:first N1370f343164f488a9256287516535ff3
56 rdf:rest N87a25cd16ffc4aa889df4026bbc9da4b
57 N761f6696538f4652874a93836993ef47 schema:location Tokyo
58 schema:name Springer Japan
59 rdf:type schema:Organisation
60 N86ba68630c644c7d87fc2ee2c444fa35 schema:familyName Ito
61 schema:givenName Koji
62 rdf:type schema:Person
63 N87a25cd16ffc4aa889df4026bbc9da4b rdf:first N886256a0994842c793120827d05bb173
64 rdf:rest rdf:nil
65 N886256a0994842c793120827d05bb173 schema:familyName Fukuyama
66 schema:givenName Hidenao
67 rdf:type schema:Person
68 N8cc6e8f3f9de4892a68c37301013f2e1 rdf:first N86ba68630c644c7d87fc2ee2c444fa35
69 rdf:rest Nec04918c40b94841b399205de9211f99
70 N8ec09ed0902a4f5191d314c3eaef885e rdf:first sg:person.0600434417.84
71 rdf:rest rdf:nil
72 N9f5b85293e224f00988ede7476a16c2c schema:name readcube_id
73 schema:value 5cb4d09f7911b7774c1e80d1986e43e99f596004ce2061ebe6c1a74cfe5940d3
74 rdf:type schema:PropertyValue
75 N9f86f7bdda9d4861a6c5befd2f77ef83 schema:isbn 978-4-431-30961-1
76 978-4-431-30962-8
77 schema:name Complex Medical Engineering
78 rdf:type schema:Book
79 Na6c6d07803b142e5acc765894c37292f schema:familyName Tobimatsu
80 schema:givenName Shozo
81 rdf:type schema:Person
82 Ndcad12e0d8d24138a0e862f21c7fe86b schema:familyName Wu
83 schema:givenName Jing Long
84 rdf:type schema:Person
85 Ne4168f9c4c0a4af1a5bf1081387ed0b3 rdf:first Ndcad12e0d8d24138a0e862f21c7fe86b
86 rdf:rest N8cc6e8f3f9de4892a68c37301013f2e1
87 Nec04918c40b94841b399205de9211f99 rdf:first Na6c6d07803b142e5acc765894c37292f
88 rdf:rest N7536fc50cd5a4ae48b38ca27065b28b3
89 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
90 schema:name Medical and Health Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
93 schema:name Neurosciences
94 rdf:type schema:DefinedTerm
95 sg:person.0600434417.84 schema:affiliation N1e70add2cec146b4b02cda4d615306a6
96 schema:familyName Ioannides
97 schema:givenName Andreas A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84
99 rdf:type schema:Person
100 sg:pub.10.1023/a:1022258620435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034352216
101 https://doi.org/10.1023/a:1022258620435
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/1097-0193(200010)11:2<77::aid-hbm20>3.0.co;2-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035535644
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/andp.18531650603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006835116
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.neuroimage.2003.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028325585
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.neuroimage.2004.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018706602
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0013-4694(97)00068-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048763421
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0079-6123(04)48012-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031820059
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0165-0173(99)00027-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047957768
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s1053-8119(02)00053-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041743911
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s1053-8119(03)00367-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045636136
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/0266-5611/6/4/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041998952
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1093/cercor/bhg091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025790514
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/42.759120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170758
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1176/appi.ajp.158.9.1429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063494099
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1523/jneurosci.1091-05.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015109357
130 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...