Personal Verification with Hand Shapes Using a Modular-Type Neural Network with RBF Output Units View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Seiji Ishihara , Takashi Nagano

ABSTRACT

There are increasing needs of personal verification technologies using physical characteristics of humans for automatic gate control systems. In this paper, we propose a personal verification system with hand shapes using a modular-type neural network with RBF output units. We extracted many features from a hand image with a simple algorithm, and then selected 20 features among them based on the results of the statistical analysis. These features are lengths of fingers and the area of a palm, etc. We used a set of the selected features as an input pattern to the modular-type neural network. Each module of the modular-type neural network is a three-layered neural network that has one RBF output unit. The modular-type neural network with RBF output units can achieve high rejection rates on patterns of unlearned classes. This is its advantage over the conventional modular-type neural networks with sigmoidal output units. We show that our system achieves both high verification rates on patterns of 40 learned persons and high rejection rates on patterns of 20 unlearned persons. More... »

PAGES

318-324

Book

TITLE

The State of the Art in Computational Intelligence

ISBN

978-3-7908-1322-7
978-3-7908-1844-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7908-1844-4_51

DOI

http://dx.doi.org/10.1007/978-3-7908-1844-4_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027017256


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Department of Industrial and Systems Engineering, Faculty of Engineering, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo\u00a0184-8584, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishihara", 
        "givenName": "Seiji", 
        "id": "sg:person.015033571005.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033571005.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hosei University", 
          "id": "https://www.grid.ac/institutes/grid.257114.4", 
          "name": [
            "Department of Industrial and Systems Engineering, Faculty of Engineering, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo\u00a0184-8584, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagano", 
        "givenName": "Takashi", 
        "id": "sg:person.01034442456.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "There are increasing needs of personal verification technologies using physical characteristics of humans for automatic gate control systems. In this paper, we propose a personal verification system with hand shapes using a modular-type neural network with RBF output units. We extracted many features from a hand image with a simple algorithm, and then selected 20 features among them based on the results of the statistical analysis. These features are lengths of fingers and the area of a palm, etc. We used a set of the selected features as an input pattern to the modular-type neural network. Each module of the modular-type neural network is a three-layered neural network that has one RBF output unit. The modular-type neural network with RBF output units can achieve high rejection rates on patterns of unlearned classes. This is its advantage over the conventional modular-type neural networks with sigmoidal output units. We show that our system achieves both high verification rates on patterns of 40 learned persons and high rejection rates on patterns of 20 unlearned persons.", 
    "editor": [
      {
        "familyName": "Sin\u010d\u00e1k", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Va\u0161\u010d\u00e1k", 
        "givenName": "J\u00e1n", 
        "type": "Person"
      }, 
      {
        "familyName": "Kvasni\u010dka", 
        "givenName": "Vladim\u00edr", 
        "type": "Person"
      }, 
      {
        "familyName": "Mesiar", 
        "givenName": "Radko", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7908-1844-4_51", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7908-1322-7", 
        "978-3-7908-1844-4"
      ], 
      "name": "The State of the Art in Computational Intelligence", 
      "type": "Book"
    }, 
    "name": "Personal Verification with Hand Shapes Using a Modular-Type Neural Network with RBF Output Units", 
    "pagination": "318-324", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7908-1844-4_51"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "80b46f2bc183581c3c7671d40cdb8eafdb07514975f159e7c081342bf5718d66"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027017256"
        ]
      }
    ], 
    "publisher": {
      "location": "Heidelberg", 
      "name": "Physica-Verlag HD", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7908-1844-4_51", 
      "https://app.dimensions.ai/details/publication/pub.1027017256"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000046.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7908-1844-4_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1844-4_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1844-4_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1844-4_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1844-4_51'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7908-1844-4_51 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3a4bd5d6d8a540caa6201d371d2b7573
4 schema:datePublished 2000
5 schema:datePublishedReg 2000-01-01
6 schema:description There are increasing needs of personal verification technologies using physical characteristics of humans for automatic gate control systems. In this paper, we propose a personal verification system with hand shapes using a modular-type neural network with RBF output units. We extracted many features from a hand image with a simple algorithm, and then selected 20 features among them based on the results of the statistical analysis. These features are lengths of fingers and the area of a palm, etc. We used a set of the selected features as an input pattern to the modular-type neural network. Each module of the modular-type neural network is a three-layered neural network that has one RBF output unit. The modular-type neural network with RBF output units can achieve high rejection rates on patterns of unlearned classes. This is its advantage over the conventional modular-type neural networks with sigmoidal output units. We show that our system achieves both high verification rates on patterns of 40 learned persons and high rejection rates on patterns of 20 unlearned persons.
7 schema:editor Nab815ed7250343ac8e5a98c2b3b1d9f4
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N15a4660f812d46778ef836dbb7d21e59
12 schema:name Personal Verification with Hand Shapes Using a Modular-Type Neural Network with RBF Output Units
13 schema:pagination 318-324
14 schema:productId N4eaaa4475c4a4f838257034d5c950d39
15 N5b999e06501345a6b47cccb72e6e1a56
16 Ne2dd9743400c4f5294bb4dc70b1c545e
17 schema:publisher N44d6178d3ddf4d13a3d38da3b23f50e7
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027017256
19 https://doi.org/10.1007/978-3-7908-1844-4_51
20 schema:sdDatePublished 2019-04-15T21:45
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N4377d826121949f4a2c039608123e701
23 schema:url http://link.springer.com/10.1007/978-3-7908-1844-4_51
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0f0a583c67fb44afa1486b3e3ef3780f rdf:first Nb19a635ea20a46d08f02b6e671137282
28 rdf:rest N5616beef87394c72a796369abbcfe785
29 N15a4660f812d46778ef836dbb7d21e59 schema:isbn 978-3-7908-1322-7
30 978-3-7908-1844-4
31 schema:name The State of the Art in Computational Intelligence
32 rdf:type schema:Book
33 N3a4bd5d6d8a540caa6201d371d2b7573 rdf:first sg:person.015033571005.43
34 rdf:rest N96d498cf0762430ea10123d4fbd0f12c
35 N4377d826121949f4a2c039608123e701 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N44d6178d3ddf4d13a3d38da3b23f50e7 schema:location Heidelberg
38 schema:name Physica-Verlag HD
39 rdf:type schema:Organisation
40 N4eaaa4475c4a4f838257034d5c950d39 schema:name doi
41 schema:value 10.1007/978-3-7908-1844-4_51
42 rdf:type schema:PropertyValue
43 N5616beef87394c72a796369abbcfe785 rdf:first N9f41b18c6ea141e8b417f7816b9b3196
44 rdf:rest N5a6ba2d1bbab4c58bc597c64dc1000c5
45 N5a6ba2d1bbab4c58bc597c64dc1000c5 rdf:first Nde150d53643d469a984c9a02e94b9ecd
46 rdf:rest rdf:nil
47 N5b999e06501345a6b47cccb72e6e1a56 schema:name dimensions_id
48 schema:value pub.1027017256
49 rdf:type schema:PropertyValue
50 N96d498cf0762430ea10123d4fbd0f12c rdf:first sg:person.01034442456.31
51 rdf:rest rdf:nil
52 N9f41b18c6ea141e8b417f7816b9b3196 schema:familyName Kvasnička
53 schema:givenName Vladimír
54 rdf:type schema:Person
55 Nab815ed7250343ac8e5a98c2b3b1d9f4 rdf:first Nec573bc0107b4ed39f242d0d2b569edb
56 rdf:rest N0f0a583c67fb44afa1486b3e3ef3780f
57 Nb19a635ea20a46d08f02b6e671137282 schema:familyName Vaščák
58 schema:givenName Ján
59 rdf:type schema:Person
60 Nde150d53643d469a984c9a02e94b9ecd schema:familyName Mesiar
61 schema:givenName Radko
62 rdf:type schema:Person
63 Ne2dd9743400c4f5294bb4dc70b1c545e schema:name readcube_id
64 schema:value 80b46f2bc183581c3c7671d40cdb8eafdb07514975f159e7c081342bf5718d66
65 rdf:type schema:PropertyValue
66 Nec573bc0107b4ed39f242d0d2b569edb schema:familyName Sinčák
67 schema:givenName Peter
68 rdf:type schema:Person
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.01034442456.31 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
76 schema:familyName Nagano
77 schema:givenName Takashi
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034442456.31
79 rdf:type schema:Person
80 sg:person.015033571005.43 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
81 schema:familyName Ishihara
82 schema:givenName Seiji
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015033571005.43
84 rdf:type schema:Person
85 https://www.grid.ac/institutes/grid.257114.4 schema:alternateName Hosei University
86 schema:name Department of Industrial and Systems Engineering, Faculty of Engineering, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...