Bagging Improves Uncertainty Representation in Evidential Pattern Classification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Jérémie François , Yves Grandvalet , Thierry Denceux , Jean-Michel Roger

ABSTRACT

Uncertainty representation is a major issue in pattern recognition when the outputs of a classifier do not lead directly to a final decision, but are used in combination with other systems, or as input to an interactive decision process. In such contexts, it may be advantageous to resort to rich and flexible formalisms for representing and manipulating uncertain information, such as the Dempster-Shafer theory of Evidence. In this paper, it is shown that the quality and reliability of the outputs from an evidence-theoretic classifier may be improved using an adaptation from a resample-and-combine approach introduced by Breiman and known as "bagging". This approach is explained and studied experimentally using simulated data. In particular, results show that bagging improves classification accuracy and limits the influence of outliers and ambiguous training patterns. More... »

PAGES

295-308

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7908-1797-3_23

DOI

http://dx.doi.org/10.1007/978-3-7908-1797-3_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025310070


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cemagref, GIQUAL Research Unit, 361 rue Jean-Fran\u00e7ois Breton, F-34033, Montpellier, France", 
          "id": "http://www.grid.ac/institutes/grid.507621.7", 
          "name": [
            "UMR CNRS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, Heudiasyc, F-60205 Compi\u00e8gne, Compi\u00e8gne, France", 
            "Cemagref, GIQUAL Research Unit, 361 rue Jean-Fran\u00e7ois Breton, F-34033, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fran\u00e7ois", 
        "givenName": "J\u00e9r\u00e9mie", 
        "id": "sg:person.016704044477.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704044477.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UMR CNRS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, Heudiasyc, F-60205 Compi\u00e8gne, Compi\u00e8gne, France", 
          "id": "http://www.grid.ac/institutes/grid.462261.5", 
          "name": [
            "UMR CNRS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, Heudiasyc, F-60205 Compi\u00e8gne, Compi\u00e8gne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandvalet", 
        "givenName": "Yves", 
        "id": "sg:person.015255215731.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "UMR CNRS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, Heudiasyc, F-60205 Compi\u00e8gne, Compi\u00e8gne, France", 
          "id": "http://www.grid.ac/institutes/grid.462261.5", 
          "name": [
            "UMR CNRS 6599, Universit\u00e9 de Technologie de Compi\u00e8gne, Heudiasyc, F-60205 Compi\u00e8gne, Compi\u00e8gne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denceux", 
        "givenName": "Thierry", 
        "id": "sg:person.010204634377.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204634377.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cemagref, GIQUAL Research Unit, 361 rue Jean-Fran\u00e7ois Breton, F-34033, Montpellier, France", 
          "id": "http://www.grid.ac/institutes/grid.507621.7", 
          "name": [
            "Cemagref, GIQUAL Research Unit, 361 rue Jean-Fran\u00e7ois Breton, F-34033, Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roger", 
        "givenName": "Jean-Michel", 
        "id": "sg:person.0776463611.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776463611.61"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "Uncertainty representation is a major issue in pattern recognition when the outputs of a classifier do not lead directly to a final decision, but are used in combination with other systems, or as input to an interactive decision process. In such contexts, it may be advantageous to resort to rich and flexible formalisms for representing and manipulating uncertain information, such as the Dempster-Shafer theory of Evidence. In this paper, it is shown that the quality and reliability of the outputs from an evidence-theoretic classifier may be improved using an adaptation from a resample-and-combine approach introduced by Breiman and known as \"bagging\". This approach is explained and studied experimentally using simulated data. In particular, results show that bagging improves classification accuracy and limits the influence of outliers and ambiguous training patterns.", 
    "editor": [
      {
        "familyName": "Bouchon-Meunier", 
        "givenName": "Bernadette", 
        "type": "Person"
      }, 
      {
        "familyName": "Guti\u00e9rrez-R\u00edos", 
        "givenName": "Julio", 
        "type": "Person"
      }, 
      {
        "familyName": "Magdalena", 
        "givenName": "Luis", 
        "type": "Person"
      }, 
      {
        "familyName": "Yager", 
        "givenName": "Ronald R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7908-1797-3_23", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-00329-9", 
        "978-3-7908-1797-3"
      ], 
      "name": "Technologies for Constructing Intelligent Systems 1", 
      "type": "Book"
    }, 
    "keywords": [
      "uncertainty representation", 
      "interactive decision process", 
      "Dempster-Shafer theory", 
      "pattern recognition", 
      "training patterns", 
      "flexible formalism", 
      "uncertain information", 
      "pattern classification", 
      "classification accuracy", 
      "influence of outliers", 
      "decision process", 
      "classifier", 
      "final decision", 
      "bagging", 
      "such contexts", 
      "major issue", 
      "representation", 
      "outliers", 
      "classification", 
      "recognition", 
      "output", 
      "information", 
      "accuracy", 
      "resamples", 
      "Breiman", 
      "input", 
      "reliability", 
      "system", 
      "issues", 
      "decisions", 
      "formalism", 
      "quality", 
      "context", 
      "adaptation", 
      "data", 
      "process", 
      "results", 
      "combination", 
      "theory", 
      "patterns", 
      "influence", 
      "evidence", 
      "approach", 
      "paper", 
      "evidence-theoretic classifier", 
      "ambiguous training patterns", 
      "Evidential Pattern Classification"
    ], 
    "name": "Bagging Improves Uncertainty Representation in Evidential Pattern Classification", 
    "pagination": "295-308", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025310070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7908-1797-3_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7908-1797-3_23", 
      "https://app.dimensions.ai/details/publication/pub.1025310070"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_158.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-7908-1797-3_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1797-3_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1797-3_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1797-3_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1797-3_23'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      23 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7908-1797-3_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nddf5833041dd42819bb7ff3ab455d9fd
4 schema:datePublished 2002
5 schema:datePublishedReg 2002-01-01
6 schema:description Uncertainty representation is a major issue in pattern recognition when the outputs of a classifier do not lead directly to a final decision, but are used in combination with other systems, or as input to an interactive decision process. In such contexts, it may be advantageous to resort to rich and flexible formalisms for representing and manipulating uncertain information, such as the Dempster-Shafer theory of Evidence. In this paper, it is shown that the quality and reliability of the outputs from an evidence-theoretic classifier may be improved using an adaptation from a resample-and-combine approach introduced by Breiman and known as "bagging". This approach is explained and studied experimentally using simulated data. In particular, results show that bagging improves classification accuracy and limits the influence of outliers and ambiguous training patterns.
7 schema:editor N4691b9b41b9a4ae58b01b8514acfa62b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N127fa95790a741488a1fc3d175d50336
12 schema:keywords Breiman
13 Dempster-Shafer theory
14 Evidential Pattern Classification
15 accuracy
16 adaptation
17 ambiguous training patterns
18 approach
19 bagging
20 classification
21 classification accuracy
22 classifier
23 combination
24 context
25 data
26 decision process
27 decisions
28 evidence
29 evidence-theoretic classifier
30 final decision
31 flexible formalism
32 formalism
33 influence
34 influence of outliers
35 information
36 input
37 interactive decision process
38 issues
39 major issue
40 outliers
41 output
42 paper
43 pattern classification
44 pattern recognition
45 patterns
46 process
47 quality
48 recognition
49 reliability
50 representation
51 resamples
52 results
53 such contexts
54 system
55 theory
56 training patterns
57 uncertain information
58 uncertainty representation
59 schema:name Bagging Improves Uncertainty Representation in Evidential Pattern Classification
60 schema:pagination 295-308
61 schema:productId N97b833ec5fa04a92af1c4cd31456345f
62 Nd6294470d17d4b1ba4f2df6b58d96489
63 schema:publisher N863ea4aeabd549cbbc8dbb28dcb07aa2
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025310070
65 https://doi.org/10.1007/978-3-7908-1797-3_23
66 schema:sdDatePublished 2022-01-01T19:09
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nb2a10c8aeb7842e48a1cc1cb72396f0f
69 schema:url https://doi.org/10.1007/978-3-7908-1797-3_23
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N0a0e474ccf9043efab0a330495352355 rdf:first Na163d1744a8a4967b9aad57feda8e482
74 rdf:rest N68fb2cc7270240d285c75bccfbdf73da
75 N127fa95790a741488a1fc3d175d50336 schema:isbn 978-3-662-00329-9
76 978-3-7908-1797-3
77 schema:name Technologies for Constructing Intelligent Systems 1
78 rdf:type schema:Book
79 N22f1606ae3204d04bf168e87afb0ef07 rdf:first N5a9a07d8bc0e4c64858b95ba794995db
80 rdf:rest N0a0e474ccf9043efab0a330495352355
81 N23dab32a7fc74b9cb2a7860fa70241e0 rdf:first sg:person.010204634377.23
82 rdf:rest Nd49081ff67d0479fad8217982b9809da
83 N4691b9b41b9a4ae58b01b8514acfa62b rdf:first N55b8b701730442a58030a3ead922b9eb
84 rdf:rest N22f1606ae3204d04bf168e87afb0ef07
85 N55b8b701730442a58030a3ead922b9eb schema:familyName Bouchon-Meunier
86 schema:givenName Bernadette
87 rdf:type schema:Person
88 N5a9a07d8bc0e4c64858b95ba794995db schema:familyName Gutiérrez-Ríos
89 schema:givenName Julio
90 rdf:type schema:Person
91 N68fb2cc7270240d285c75bccfbdf73da rdf:first N709d6a3349ac444eab09b9199f0b10b5
92 rdf:rest rdf:nil
93 N709d6a3349ac444eab09b9199f0b10b5 schema:familyName Yager
94 schema:givenName Ronald R.
95 rdf:type schema:Person
96 N863ea4aeabd549cbbc8dbb28dcb07aa2 schema:name Springer Nature
97 rdf:type schema:Organisation
98 N8ef25d5420d34f28a466254291b61660 rdf:first sg:person.015255215731.52
99 rdf:rest N23dab32a7fc74b9cb2a7860fa70241e0
100 N97b833ec5fa04a92af1c4cd31456345f schema:name doi
101 schema:value 10.1007/978-3-7908-1797-3_23
102 rdf:type schema:PropertyValue
103 Na163d1744a8a4967b9aad57feda8e482 schema:familyName Magdalena
104 schema:givenName Luis
105 rdf:type schema:Person
106 Nb2a10c8aeb7842e48a1cc1cb72396f0f schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nd49081ff67d0479fad8217982b9809da rdf:first sg:person.0776463611.61
109 rdf:rest rdf:nil
110 Nd6294470d17d4b1ba4f2df6b58d96489 schema:name dimensions_id
111 schema:value pub.1025310070
112 rdf:type schema:PropertyValue
113 Nddf5833041dd42819bb7ff3ab455d9fd rdf:first sg:person.016704044477.48
114 rdf:rest N8ef25d5420d34f28a466254291b61660
115 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
116 schema:name Information and Computing Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
119 schema:name Artificial Intelligence and Image Processing
120 rdf:type schema:DefinedTerm
121 sg:person.010204634377.23 schema:affiliation grid-institutes:grid.462261.5
122 schema:familyName Denceux
123 schema:givenName Thierry
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010204634377.23
125 rdf:type schema:Person
126 sg:person.015255215731.52 schema:affiliation grid-institutes:grid.462261.5
127 schema:familyName Grandvalet
128 schema:givenName Yves
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015255215731.52
130 rdf:type schema:Person
131 sg:person.016704044477.48 schema:affiliation grid-institutes:grid.507621.7
132 schema:familyName François
133 schema:givenName Jérémie
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016704044477.48
135 rdf:type schema:Person
136 sg:person.0776463611.61 schema:affiliation grid-institutes:grid.507621.7
137 schema:familyName Roger
138 schema:givenName Jean-Michel
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776463611.61
140 rdf:type schema:Person
141 grid-institutes:grid.462261.5 schema:alternateName UMR CNRS 6599, Université de Technologie de Compiègne, Heudiasyc, F-60205 Compiègne, Compiègne, France
142 schema:name UMR CNRS 6599, Université de Technologie de Compiègne, Heudiasyc, F-60205 Compiègne, Compiègne, France
143 rdf:type schema:Organization
144 grid-institutes:grid.507621.7 schema:alternateName Cemagref, GIQUAL Research Unit, 361 rue Jean-François Breton, F-34033, Montpellier, France
145 schema:name Cemagref, GIQUAL Research Unit, 361 rue Jean-François Breton, F-34033, Montpellier, France
146 UMR CNRS 6599, Université de Technologie de Compiègne, Heudiasyc, F-60205 Compiègne, Compiègne, France
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...