2002
AUTHORS ABSTRACTThis chapter documents how GP forecasting of stock prices used to execute a single-day-trading-strategy (or SDTS) improves trading returns. The strategy mandates holding no positions overnight to minimize risk and daily trading decisions are based on forecasts of daily high and low stock prices. For comparison, two methods produce the price forecasts. Genetically evolved models produce one. The other is a naive forecast where today’s actual price is used as tomorrow’s forecast. Trading decisions tested on a small sample of four stocks over a period of twenty days produced higher returns for decisions based on the GP price forecasts. More... »
PAGES359-381
Evolutionary Computation in Economics and Finance
ISBN
978-3-7908-2512-1
978-3-7908-1784-3
http://scigraph.springernature.com/pub.10.1007/978-3-7908-1784-3_19
DOIhttp://dx.doi.org/10.1007/978-3-7908-1784-3_19
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1029725917
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Econometrics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Economics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Penn State Lehigh Valley",
"id": "https://www.grid.ac/institutes/grid.457008.e",
"name": [
"Management Science & Information Systems, Penn State Lehigh Valley, USA"
],
"type": "Organization"
},
"familyName": "Kaboudan",
"givenName": "Mahmoud",
"id": "sg:person.010753130665.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010753130665.04"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1002/(sici)1099-1174(199912)8:4<237::aid-isaf174>3.0.co;2-j",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005329192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1099-1174(199912)8:4<237::aid-isaf174>3.0.co;2-j",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005329192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/1467-9876.00109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010069730"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/rfs/1.1.41",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023182472"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1099-131x(199909)18:5<345::aid-for744>3.0.co;2-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025448743"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1099-131x(199909)18:5<345::aid-for744>3.0.co;2-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025448743"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008650100948",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027143777",
"https://doi.org/10.1023/a:1008650100948"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1540-6261.1992.tb04681.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031279451"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7091-6492-1_87",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031859159",
"https://doi.org/10.1007/978-3-7091-6492-1_87"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0165-1889(97)82991-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043201808"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0304-405x(88)90020-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051105932"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/294743",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058604569"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/296465",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058606291"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/296466",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058606292"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2331231",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069893105"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1474-6670(17)40494-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085604497"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1474-6670(17)47123-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085859589"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1.9781611970319",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098556624"
],
"type": "CreativeWork"
}
],
"datePublished": "2002",
"datePublishedReg": "2002-01-01",
"description": "This chapter documents how GP forecasting of stock prices used to execute a single-day-trading-strategy (or SDTS) improves trading returns. The strategy mandates holding no positions overnight to minimize risk and daily trading decisions are based on forecasts of daily high and low stock prices. For comparison, two methods produce the price forecasts. Genetically evolved models produce one. The other is a naive forecast where today\u2019s actual price is used as tomorrow\u2019s forecast. Trading decisions tested on a small sample of four stocks over a period of twenty days produced higher returns for decisions based on the GP price forecasts.",
"editor": [
{
"familyName": "Chen",
"givenName": "Shu-Heng",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-7908-1784-3_19",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-7908-2512-1",
"978-3-7908-1784-3"
],
"name": "Evolutionary Computation in Economics and Finance",
"type": "Book"
},
"name": "GP Forecasts of Stock Prices for Profitable Trading",
"pagination": "359-381",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-7908-1784-3_19"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"8d9bcefb9588548a7be94c82e20474bacba9e8ef3eaed3e82c87d996bc61d688"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1029725917"
]
}
],
"publisher": {
"location": "Heidelberg",
"name": "Physica-Verlag HD",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-7908-1784-3_19",
"https://app.dimensions.ai/details/publication/pub.1029725917"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T23:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000261.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-7908-1784-3_19"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1784-3_19'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1784-3_19'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1784-3_19'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7908-1784-3_19'
This table displays all metadata directly associated to this object as RDF triples.
115 TRIPLES
23 PREDICATES
43 URIs
20 LITERALS
8 BLANK NODES