Non-canonical Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2011

AUTHORS

Yuri Arlinskii , Sergey Belyi , Eduard Tsekanovskii

ABSTRACT

In Chapter 6 we described the class N(R) of Herglotz-Nevanlinna functions in a finite-dimensional Hilbert space that can be realized as impedance functions of canonical L-systems. Since the class N(R) is substantially narrower than the set of all Herglotz-Nevanlinna functions, the problem of the general realization, or description of a new non-canonical type of systems that realize an arbitrary Herglotz-Nevanlinna function, remain open. More... »

PAGES

453-496

Book

TITLE

Conservative Realizations of Herglotz-Nevanlinna Functions

ISBN

978-3-7643-9995-5
978-3-7643-9996-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-9996-2_12

DOI

http://dx.doi.org/10.1007/978-3-7643-9996-2_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039678845


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Volodymyr Dahl East Ukrainian National University", 
          "id": "https://www.grid.ac/institutes/grid.445816.a", 
          "name": [
            "Department of Mathematics, East Ukrainian National University, Kvartal Molodizhny, 20-A, 91034\u00a0Lugansk, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arlinskii", 
        "givenName": "Yuri", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Troy University", 
          "id": "https://www.grid.ac/institutes/grid.265188.0", 
          "name": [
            "Department of Mathematics, Troy University, Troy, AL\u00a036082, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belyi", 
        "givenName": "Sergey", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Niagara University", 
          "id": "https://www.grid.ac/institutes/grid.260955.d", 
          "name": [
            "Department of Mathematics, Niagara University, Lewiston, NY\u00a014109, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsekanovskii", 
        "givenName": "Eduard", 
        "type": "Person"
      }
    ], 
    "datePublished": "2011", 
    "datePublishedReg": "2011-01-01", 
    "description": "In Chapter 6 we described the class N(R) of Herglotz-Nevanlinna functions in a finite-dimensional Hilbert space that can be realized as impedance functions of canonical L-systems. Since the class N(R) is substantially narrower than the set of all Herglotz-Nevanlinna functions, the problem of the general realization, or description of a new non-canonical type of systems that realize an arbitrary Herglotz-Nevanlinna function, remain open.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-9996-2_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-9995-5", 
        "978-3-7643-9996-2"
      ], 
      "name": "Conservative Realizations of Herglotz-Nevanlinna Functions", 
      "type": "Book"
    }, 
    "name": "Non-canonical Systems", 
    "pagination": "453-496", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-9996-2_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd031abf09604a6769f6561982d4d6889df588b29f2cd94cc82a6d6d5e7d1ff6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039678845"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Springer Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-9996-2_12", 
      "https://app.dimensions.ai/details/publication/pub.1039678845"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000068.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-9996-2_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9996-2_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9996-2_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9996-2_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9996-2_12'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-9996-2_12 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nee209cb35eb9470194f2b83b3e9b60d2
4 schema:datePublished 2011
5 schema:datePublishedReg 2011-01-01
6 schema:description In Chapter 6 we described the class N(R) of Herglotz-Nevanlinna functions in a finite-dimensional Hilbert space that can be realized as impedance functions of canonical L-systems. Since the class N(R) is substantially narrower than the set of all Herglotz-Nevanlinna functions, the problem of the general realization, or description of a new non-canonical type of systems that realize an arbitrary Herglotz-Nevanlinna function, remain open.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0d129169457b4ead932db7d9d87e91a5
11 schema:name Non-canonical Systems
12 schema:pagination 453-496
13 schema:productId N66a3d87f061c4e5fb98ea36cb16a045c
14 N9a08b1b3e5714fa2bfe3eeff73e758ac
15 Ncb9529d2545a45aaa52c3bdcbc779302
16 schema:publisher N011a0ded62e24d5c9f45e04d68fcac14
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039678845
18 https://doi.org/10.1007/978-3-7643-9996-2_12
19 schema:sdDatePublished 2019-04-15T17:59
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher Nc64ed9c36fcc451cb379b3c52a34124f
22 schema:url http://link.springer.com/10.1007/978-3-7643-9996-2_12
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N011a0ded62e24d5c9f45e04d68fcac14 schema:location Basel
27 schema:name Springer Basel
28 rdf:type schema:Organisation
29 N0d129169457b4ead932db7d9d87e91a5 schema:isbn 978-3-7643-9995-5
30 978-3-7643-9996-2
31 schema:name Conservative Realizations of Herglotz-Nevanlinna Functions
32 rdf:type schema:Book
33 N126aa2432e9e457c8675a8e7c473f23f schema:affiliation https://www.grid.ac/institutes/grid.260955.d
34 schema:familyName Tsekanovskii
35 schema:givenName Eduard
36 rdf:type schema:Person
37 N3dd052139fdd4430b30d1b72b3485027 schema:affiliation https://www.grid.ac/institutes/grid.445816.a
38 schema:familyName Arlinskii
39 schema:givenName Yuri
40 rdf:type schema:Person
41 N5bdc5a4046fd4b53924d8da566d5b9a8 schema:affiliation https://www.grid.ac/institutes/grid.265188.0
42 schema:familyName Belyi
43 schema:givenName Sergey
44 rdf:type schema:Person
45 N66a3d87f061c4e5fb98ea36cb16a045c schema:name doi
46 schema:value 10.1007/978-3-7643-9996-2_12
47 rdf:type schema:PropertyValue
48 N84061724e79f4dffb8a9674cc7c0b601 rdf:first N126aa2432e9e457c8675a8e7c473f23f
49 rdf:rest rdf:nil
50 N872d5f31dfec4c4dadd9fc04a3d66262 rdf:first N5bdc5a4046fd4b53924d8da566d5b9a8
51 rdf:rest N84061724e79f4dffb8a9674cc7c0b601
52 N9a08b1b3e5714fa2bfe3eeff73e758ac schema:name readcube_id
53 schema:value bd031abf09604a6769f6561982d4d6889df588b29f2cd94cc82a6d6d5e7d1ff6
54 rdf:type schema:PropertyValue
55 Nc64ed9c36fcc451cb379b3c52a34124f schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Ncb9529d2545a45aaa52c3bdcbc779302 schema:name dimensions_id
58 schema:value pub.1039678845
59 rdf:type schema:PropertyValue
60 Nee209cb35eb9470194f2b83b3e9b60d2 rdf:first N3dd052139fdd4430b30d1b72b3485027
61 rdf:rest N872d5f31dfec4c4dadd9fc04a3d66262
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 https://www.grid.ac/institutes/grid.260955.d schema:alternateName Niagara University
69 schema:name Department of Mathematics, Niagara University, Lewiston, NY 14109, USA
70 rdf:type schema:Organization
71 https://www.grid.ac/institutes/grid.265188.0 schema:alternateName Troy University
72 schema:name Department of Mathematics, Troy University, Troy, AL 36082, USA
73 rdf:type schema:Organization
74 https://www.grid.ac/institutes/grid.445816.a schema:alternateName Volodymyr Dahl East Ukrainian National University
75 schema:name Department of Mathematics, East Ukrainian National University, Kvartal Molodizhny, 20-A, 91034 Lugansk, Ukraine
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...