The Schur Transformation for Nevanlinna Functions: Operator Representations, Resolvent Matrices, and Orthogonal Polynomials View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

D. Alpay , A. Dijksma , H. Langer

ABSTRACT

A Nevanlinna function is a function which is analytic in the open upper half-plane and has a non-negative imaginary paxt there. In this paper we study a fractional linear transformation for a Nevanlinna function n with a suitable asymptotic expansion at ∞, that is an analogue of the Schur transformation for contractive analytic functions in the unit disk. Applying the transformation p times we find a Nevanlinna function n p which is a fractional linear transformation of the given function n. The main results concern the effect of this transformation to the realizations of n and n p by which we mean their representations through resolvents of self-adjoint operators in Hilbert space. Our tools are block operator matrix representations, u-resolvent matrices, and reproducing kernel Hilbert spaces. More... »

PAGES

27-63

Book

TITLE

Modern Analysis and Applications

ISBN

978-3-7643-9918-4
978-3-7643-9919-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4

DOI

http://dx.doi.org/10.1007/978-3-7643-9919-1_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050943660


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105\u00a0Beer-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "D.", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 407, 9700\u00a0AK Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "A.", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "H.", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0024-3795(90)90128-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021892747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19931610110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025837130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2004.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031956638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035417758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jath.2000.3518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048561537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "A Nevanlinna function is a function which is analytic in the open upper half-plane and has a non-negative imaginary paxt there. In this paper we study a fractional linear transformation for a Nevanlinna function n with a suitable asymptotic expansion at \u221e, that is an analogue of the Schur transformation for contractive analytic functions in the unit disk. Applying the transformation p times we find a Nevanlinna function n p which is a fractional linear transformation of the given function n. The main results concern the effect of this transformation to the realizations of n and n p by which we mean their representations through resolvents of self-adjoint operators in Hilbert space. Our tools are block operator matrix representations, u-resolvent matrices, and reproducing kernel Hilbert spaces.", 
    "editor": [
      {
        "familyName": "Adamyan", 
        "givenName": "Vadim M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gohberg", 
        "givenName": "Israel", 
        "type": "Person"
      }, 
      {
        "familyName": "Kochubei", 
        "givenName": "Anatoly", 
        "type": "Person"
      }, 
      {
        "familyName": "Popov", 
        "givenName": "Gennadiy", 
        "type": "Person"
      }, 
      {
        "familyName": "Berezansky", 
        "givenName": "Yurij", 
        "type": "Person"
      }, 
      {
        "familyName": "Gorbachuk", 
        "givenName": "Myroslav", 
        "type": "Person"
      }, 
      {
        "familyName": "Gorbachuk", 
        "givenName": "Valentyna", 
        "type": "Person"
      }, 
      {
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-9919-1_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-9918-4", 
        "978-3-7643-9919-1"
      ], 
      "name": "Modern Analysis and Applications", 
      "type": "Book"
    }, 
    "name": "The Schur Transformation for Nevanlinna Functions: Operator Representations, Resolvent Matrices, and Orthogonal Polynomials", 
    "pagination": "27-63", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-9919-1_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2ad6f5269fb5635d53217ee794d4b2bd13bfa413ccf3a21523fbe4f2be2ac3d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050943660"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-9919-1_4", 
      "https://app.dimensions.ai/details/publication/pub.1050943660"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-9919-1_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-9919-1_4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf746c460c7db4626aeeb5e2c97f85b68
4 schema:citation https://doi.org/10.1002/mana.19770770116
5 https://doi.org/10.1002/mana.19931610110
6 https://doi.org/10.1006/jath.2000.3518
7 https://doi.org/10.1016/0022-1236(78)90064-2
8 https://doi.org/10.1016/0024-3795(90)90128-y
9 https://doi.org/10.1016/j.laa.2004.02.037
10 schema:datePublished 2009
11 schema:datePublishedReg 2009-01-01
12 schema:description A Nevanlinna function is a function which is analytic in the open upper half-plane and has a non-negative imaginary paxt there. In this paper we study a fractional linear transformation for a Nevanlinna function n with a suitable asymptotic expansion at ∞, that is an analogue of the Schur transformation for contractive analytic functions in the unit disk. Applying the transformation p times we find a Nevanlinna function n p which is a fractional linear transformation of the given function n. The main results concern the effect of this transformation to the realizations of n and n p by which we mean their representations through resolvents of self-adjoint operators in Hilbert space. Our tools are block operator matrix representations, u-resolvent matrices, and reproducing kernel Hilbert spaces.
13 schema:editor N391ec46fb3224cc1948352ebd537df7f
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N225fc12033d94a72b99a26e9667a0276
18 schema:name The Schur Transformation for Nevanlinna Functions: Operator Representations, Resolvent Matrices, and Orthogonal Polynomials
19 schema:pagination 27-63
20 schema:productId N3f2e490c62414ff2b1f60aba9561362b
21 N85073e40f94148d68ab5cebfd92c92c1
22 N9f2e4cc5db2e48b2a12497491831d7df
23 schema:publisher Nb8f4c3d5a4764705857be06d3588e46e
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050943660
25 https://doi.org/10.1007/978-3-7643-9919-1_4
26 schema:sdDatePublished 2019-04-15T13:31
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Ne843adf3b74c4341b010b506b57142f2
29 schema:url http://link.springer.com/10.1007/978-3-7643-9919-1_4
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N01f1406de80d4ae6aa45fa00995fdd36 schema:familyName Gohberg
34 schema:givenName Israel
35 rdf:type schema:Person
36 N05698286f3484c6b94025575ecd36fbe schema:familyName Popov
37 schema:givenName Gennadiy
38 rdf:type schema:Person
39 N06abe06e6ca14989831cf8b26fb0615c schema:familyName Gorbachuk
40 schema:givenName Valentyna
41 rdf:type schema:Person
42 N20150a1f288048db97502fc48ac4bfb6 schema:familyName Langer
43 schema:givenName Heinz
44 rdf:type schema:Person
45 N20528d90589b48d8a59f0ddb92e25c4d rdf:first Na5eda65019db485fb00b33f2208b958a
46 rdf:rest N2ccdbf8200e34b258a216f968e489ab7
47 N225fc12033d94a72b99a26e9667a0276 schema:isbn 978-3-7643-9918-4
48 978-3-7643-9919-1
49 schema:name Modern Analysis and Applications
50 rdf:type schema:Book
51 N263f96a594c641ada567e314d01624ac rdf:first N8475516ce4e44244b91ac58cb7c59230
52 rdf:rest N33785e5f3edf4791a8eb3dbddf81c2d1
53 N2ccdbf8200e34b258a216f968e489ab7 rdf:first N06abe06e6ca14989831cf8b26fb0615c
54 rdf:rest Nb1d37c84586e492fa6c99407c1f96fc9
55 N33785e5f3edf4791a8eb3dbddf81c2d1 rdf:first N05698286f3484c6b94025575ecd36fbe
56 rdf:rest Nbdde0e1c9e75452ea0482f57703ba6cd
57 N391ec46fb3224cc1948352ebd537df7f rdf:first Ncf5a5c711ef745a89c02ebc39b7dbf7d
58 rdf:rest Nb6f68b284c014e25b796b87c4c4b8a36
59 N3f2e490c62414ff2b1f60aba9561362b schema:name doi
60 schema:value 10.1007/978-3-7643-9919-1_4
61 rdf:type schema:PropertyValue
62 N3fe65ddb73fc4345bc73191617ab2a4e rdf:first sg:person.013762723211.39
63 rdf:rest N6effa8ccbde34bbb85617a54f14cad61
64 N6724132f410f4431837c31aa90a506ec schema:familyName Berezansky
65 schema:givenName Yurij
66 rdf:type schema:Person
67 N6effa8ccbde34bbb85617a54f14cad61 rdf:first sg:person.07450173411.71
68 rdf:rest rdf:nil
69 N8475516ce4e44244b91ac58cb7c59230 schema:familyName Kochubei
70 schema:givenName Anatoly
71 rdf:type schema:Person
72 N85073e40f94148d68ab5cebfd92c92c1 schema:name dimensions_id
73 schema:value pub.1050943660
74 rdf:type schema:PropertyValue
75 N9f2e4cc5db2e48b2a12497491831d7df schema:name readcube_id
76 schema:value f2ad6f5269fb5635d53217ee794d4b2bd13bfa413ccf3a21523fbe4f2be2ac3d
77 rdf:type schema:PropertyValue
78 Na5eda65019db485fb00b33f2208b958a schema:familyName Gorbachuk
79 schema:givenName Myroslav
80 rdf:type schema:Person
81 Nb1d37c84586e492fa6c99407c1f96fc9 rdf:first N20150a1f288048db97502fc48ac4bfb6
82 rdf:rest rdf:nil
83 Nb6f68b284c014e25b796b87c4c4b8a36 rdf:first N01f1406de80d4ae6aa45fa00995fdd36
84 rdf:rest N263f96a594c641ada567e314d01624ac
85 Nb8f4c3d5a4764705857be06d3588e46e schema:location Basel
86 schema:name Birkhäuser Basel
87 rdf:type schema:Organisation
88 Nbdde0e1c9e75452ea0482f57703ba6cd rdf:first N6724132f410f4431837c31aa90a506ec
89 rdf:rest N20528d90589b48d8a59f0ddb92e25c4d
90 Ncf5a5c711ef745a89c02ebc39b7dbf7d schema:familyName Adamyan
91 schema:givenName Vadim M.
92 rdf:type schema:Person
93 Ne843adf3b74c4341b010b506b57142f2 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nf746c460c7db4626aeeb5e2c97f85b68 rdf:first sg:person.011517101346.40
96 rdf:rest N3fe65ddb73fc4345bc73191617ab2a4e
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
101 schema:name Pure Mathematics
102 rdf:type schema:DefinedTerm
103 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
104 schema:familyName Alpay
105 schema:givenName D.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
107 rdf:type schema:Person
108 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
109 schema:familyName Dijksma
110 schema:givenName A.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
112 rdf:type schema:Person
113 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
114 schema:familyName Langer
115 schema:givenName H.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
117 rdf:type schema:Person
118 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/mana.19931610110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025837130
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1006/jath.2000.3518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048561537
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0022-1236(78)90064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035417758
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0024-3795(90)90128-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021892747
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.laa.2004.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956638
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
131 schema:name Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
134 schema:name Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
137 schema:name Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...