The Schur Transformation for Nevanlinna Functions: Operator Representations, Resolvent Matrices, and Orthogonal Polynomials View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

D. Alpay , A. Dijksma , H. Langer

ABSTRACT

A Nevanlinna function is a function which is analytic in the open upper half-plane and has a non-negative imaginary paxt there. In this paper we study a fractional linear transformation for a Nevanlinna function n with a suitable asymptotic expansion at ∞, that is an analogue of the Schur transformation for contractive analytic functions in the unit disk. Applying the transformation p times we find a Nevanlinna function n p which is a fractional linear transformation of the given function n. The main results concern the effect of this transformation to the realizations of n and n p by which we mean their representations through resolvents of self-adjoint operators in Hilbert space. Our tools are block operator matrix representations, u-resolvent matrices, and reproducing kernel Hilbert spaces. More... »

PAGES

27-63

Book

TITLE

Modern Analysis and Applications

ISBN

978-3-7643-9918-4
978-3-7643-9919-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4

DOI

http://dx.doi.org/10.1007/978-3-7643-9919-1_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050943660


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105\u00a0Beer-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "D.", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 407, 9700\u00a0AK Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "A.", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "H.", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0024-3795(90)90128-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021892747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19931610110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025837130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2004.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031956638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035417758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jath.2000.3518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048561537"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "A Nevanlinna function is a function which is analytic in the open upper half-plane and has a non-negative imaginary paxt there. In this paper we study a fractional linear transformation for a Nevanlinna function n with a suitable asymptotic expansion at \u221e, that is an analogue of the Schur transformation for contractive analytic functions in the unit disk. Applying the transformation p times we find a Nevanlinna function n p which is a fractional linear transformation of the given function n. The main results concern the effect of this transformation to the realizations of n and n p by which we mean their representations through resolvents of self-adjoint operators in Hilbert space. Our tools are block operator matrix representations, u-resolvent matrices, and reproducing kernel Hilbert spaces.", 
    "editor": [
      {
        "familyName": "Adamyan", 
        "givenName": "Vadim M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gohberg", 
        "givenName": "Israel", 
        "type": "Person"
      }, 
      {
        "familyName": "Kochubei", 
        "givenName": "Anatoly", 
        "type": "Person"
      }, 
      {
        "familyName": "Popov", 
        "givenName": "Gennadiy", 
        "type": "Person"
      }, 
      {
        "familyName": "Berezansky", 
        "givenName": "Yurij", 
        "type": "Person"
      }, 
      {
        "familyName": "Gorbachuk", 
        "givenName": "Myroslav", 
        "type": "Person"
      }, 
      {
        "familyName": "Gorbachuk", 
        "givenName": "Valentyna", 
        "type": "Person"
      }, 
      {
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-9919-1_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-9918-4", 
        "978-3-7643-9919-1"
      ], 
      "name": "Modern Analysis and Applications", 
      "type": "Book"
    }, 
    "name": "The Schur Transformation for Nevanlinna Functions: Operator Representations, Resolvent Matrices, and Orthogonal Polynomials", 
    "pagination": "27-63", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-9919-1_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f2ad6f5269fb5635d53217ee794d4b2bd13bfa413ccf3a21523fbe4f2be2ac3d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050943660"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-9919-1_4", 
      "https://app.dimensions.ai/details/publication/pub.1050943660"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-9919-1_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-9919-1_4'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-9919-1_4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N034756f6d9f044c6ba601257905bee44
4 schema:citation https://doi.org/10.1002/mana.19770770116
5 https://doi.org/10.1002/mana.19931610110
6 https://doi.org/10.1006/jath.2000.3518
7 https://doi.org/10.1016/0022-1236(78)90064-2
8 https://doi.org/10.1016/0024-3795(90)90128-y
9 https://doi.org/10.1016/j.laa.2004.02.037
10 schema:datePublished 2009
11 schema:datePublishedReg 2009-01-01
12 schema:description A Nevanlinna function is a function which is analytic in the open upper half-plane and has a non-negative imaginary paxt there. In this paper we study a fractional linear transformation for a Nevanlinna function n with a suitable asymptotic expansion at ∞, that is an analogue of the Schur transformation for contractive analytic functions in the unit disk. Applying the transformation p times we find a Nevanlinna function n p which is a fractional linear transformation of the given function n. The main results concern the effect of this transformation to the realizations of n and n p by which we mean their representations through resolvents of self-adjoint operators in Hilbert space. Our tools are block operator matrix representations, u-resolvent matrices, and reproducing kernel Hilbert spaces.
13 schema:editor N26f59dfb1c4a4b76b002a26edb5acd81
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N1ca8bb42371b4b28a36cc955467d53bb
18 schema:name The Schur Transformation for Nevanlinna Functions: Operator Representations, Resolvent Matrices, and Orthogonal Polynomials
19 schema:pagination 27-63
20 schema:productId N79d7253d5b5c4c0e8b9302d05a603d22
21 Nb4cbcef1399c47a99da7c36c44096b2b
22 Nfbc65e778c0b42c3a7c2560d22140565
23 schema:publisher Nec55f545118a4f16b4439ebc7b2c295b
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050943660
25 https://doi.org/10.1007/978-3-7643-9919-1_4
26 schema:sdDatePublished 2019-04-15T13:31
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N1afc81bfb1fd443b9425b819cedc31c5
29 schema:url http://link.springer.com/10.1007/978-3-7643-9919-1_4
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N034756f6d9f044c6ba601257905bee44 rdf:first sg:person.011517101346.40
34 rdf:rest Nf775b5fdcb0542f590a9ed7787719b4a
35 N076b1692d12748179a8d5005efb03e92 rdf:first Nc4e00631a1c74ee6b1f16f1bc190f899
36 rdf:rest rdf:nil
37 N11b2c6dd7cb94662b5bdff2b96dcc200 schema:familyName Gorbachuk
38 schema:givenName Valentyna
39 rdf:type schema:Person
40 N1746a43c334a4409a4247295646b4c34 schema:familyName Popov
41 schema:givenName Gennadiy
42 rdf:type schema:Person
43 N176f3ad0afcf4885a73d8f7fdb4fc19a schema:familyName Adamyan
44 schema:givenName Vadim M.
45 rdf:type schema:Person
46 N19b013caa9534641bff2d108bf69cb68 schema:familyName Gohberg
47 schema:givenName Israel
48 rdf:type schema:Person
49 N1afc81bfb1fd443b9425b819cedc31c5 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N1ca8bb42371b4b28a36cc955467d53bb schema:isbn 978-3-7643-9918-4
52 978-3-7643-9919-1
53 schema:name Modern Analysis and Applications
54 rdf:type schema:Book
55 N26f59dfb1c4a4b76b002a26edb5acd81 rdf:first N176f3ad0afcf4885a73d8f7fdb4fc19a
56 rdf:rest Nde05661d5832443cac43018521e02cda
57 N368b7ad164b644aba86946b8449ebed3 schema:familyName Berezansky
58 schema:givenName Yurij
59 rdf:type schema:Person
60 N6cc820e993da4ac889bfb48fce4e575f rdf:first N1746a43c334a4409a4247295646b4c34
61 rdf:rest Nfba9d905aa2247c09bdce605500c7339
62 N79d7253d5b5c4c0e8b9302d05a603d22 schema:name dimensions_id
63 schema:value pub.1050943660
64 rdf:type schema:PropertyValue
65 N949e726d3f924b12930bb3fe4503ab2d schema:familyName Kochubei
66 schema:givenName Anatoly
67 rdf:type schema:Person
68 N9e9286e7b4204c42b07be4ab073c0894 rdf:first N11b2c6dd7cb94662b5bdff2b96dcc200
69 rdf:rest N076b1692d12748179a8d5005efb03e92
70 N9efd86050bf04b44b9f197846a694354 rdf:first sg:person.07450173411.71
71 rdf:rest rdf:nil
72 Nb4cbcef1399c47a99da7c36c44096b2b schema:name readcube_id
73 schema:value f2ad6f5269fb5635d53217ee794d4b2bd13bfa413ccf3a21523fbe4f2be2ac3d
74 rdf:type schema:PropertyValue
75 Nc4e00631a1c74ee6b1f16f1bc190f899 schema:familyName Langer
76 schema:givenName Heinz
77 rdf:type schema:Person
78 Nd213f3896aad4771a223b1d35b07a961 rdf:first Ne5016482963c4baba4bbe11ec24f2243
79 rdf:rest N9e9286e7b4204c42b07be4ab073c0894
80 Nde05661d5832443cac43018521e02cda rdf:first N19b013caa9534641bff2d108bf69cb68
81 rdf:rest Nef974cc6f5524153a7e8e98751f76a17
82 Ne5016482963c4baba4bbe11ec24f2243 schema:familyName Gorbachuk
83 schema:givenName Myroslav
84 rdf:type schema:Person
85 Nec55f545118a4f16b4439ebc7b2c295b schema:location Basel
86 schema:name Birkhäuser Basel
87 rdf:type schema:Organisation
88 Nef974cc6f5524153a7e8e98751f76a17 rdf:first N949e726d3f924b12930bb3fe4503ab2d
89 rdf:rest N6cc820e993da4ac889bfb48fce4e575f
90 Nf775b5fdcb0542f590a9ed7787719b4a rdf:first sg:person.013762723211.39
91 rdf:rest N9efd86050bf04b44b9f197846a694354
92 Nfba9d905aa2247c09bdce605500c7339 rdf:first N368b7ad164b644aba86946b8449ebed3
93 rdf:rest Nd213f3896aad4771a223b1d35b07a961
94 Nfbc65e778c0b42c3a7c2560d22140565 schema:name doi
95 schema:value 10.1007/978-3-7643-9919-1_4
96 rdf:type schema:PropertyValue
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
101 schema:name Pure Mathematics
102 rdf:type schema:DefinedTerm
103 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
104 schema:familyName Alpay
105 schema:givenName D.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
107 rdf:type schema:Person
108 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
109 schema:familyName Dijksma
110 schema:givenName A.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
112 rdf:type schema:Person
113 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
114 schema:familyName Langer
115 schema:givenName H.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
117 rdf:type schema:Person
118 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/mana.19931610110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025837130
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1006/jath.2000.3518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048561537
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0022-1236(78)90064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035417758
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0024-3795(90)90128-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021892747
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.laa.2004.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031956638
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
131 schema:name Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
134 schema:name Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
137 schema:name Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...