Approximation of Nκ∞-functions I: Models and Regularization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Aad Dijksma , Annemarie Luger , Yuri Shondin

ABSTRACT

The class Ngk∞ consists of all generalized Nevanlinna functions N with κ negative squares for which the root space at ∞ of the self-adjoint relation in the minimal model (short for self-adjoint operator realization) of N contains a κ-dimensional non-positive subspace. In this paper we discuss two specific models for the function N ∈ Ngk∞: one associated with the irreducible representation of N and one associated with a regularized version of this representation which need not be irreducible. The state space in each of these models is a reproducing kernel Pontryagin space whose reproducing kernel is a matrix function constructed from the data in the representation. More... »

PAGES

87-112

References to SciGraph publications

  • 1970-03. Diskrete Konvergenz linearer Operatoren. I in MATHEMATISCHE ANNALEN
  • 1966. Perturbation theory for linear operators in NONE
  • 2004. Minimal Realizations of Scalar Generalized Nevanlinna Functions Related to Their Basic Factorization in SPECTRAL METHODS FOR OPERATORS OF MATHEMATICAL PHYSICS
  • 2000. Self-adjoint Operators with Inner Singularities and Pontryagin Spaces in OPERATOR THEORY AND RELATED TOPICS
  • 1986. A Characterization of Generalized Zeros of Negative Type of Functions of the Class Nκ in ADVANCES IN INVARIANT SUBSPACES AND OTHER RESULTS OF OPERATOR THEORY
  • Book

    TITLE

    Spectral Theory in Inner Product Spaces and Applications

    ISBN

    978-3-7643-8910-9
    978-3-7643-8911-6

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-7643-8911-6_5

    DOI

    http://dx.doi.org/10.1007/978-3-7643-8911-6_5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024574044


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Groningen", 
              "id": "https://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Department of Mathematics, University of Groningen, P.O. Box 407, 9700, AK Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dijksma", 
            "givenName": "Aad", 
            "id": "sg:person.013762723211.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lund University", 
              "id": "https://www.grid.ac/institutes/grid.4514.4", 
              "name": [
                "Department of Mathematics, Lund Institute of Technology, Box 118, SE-221 00, Lund, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luger", 
            "givenName": "Annemarie", 
            "id": "sg:person.011442625430.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of theoretical Physics, State Pedagogical University, GSP 37, Str. Ulyanova 1, 603950, Nizhny Novgorod, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shondin", 
            "givenName": "Yuri", 
            "id": "sg:person.015771172577.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-0348-8413-6_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000870627", 
              "https://doi.org/10.1007/978-3-0348-8413-6_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8413-6_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000870627", 
              "https://doi.org/10.1007/978-3-0348-8413-6_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jdeq.1999.3755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002159253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7698-8_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008400943", 
              "https://doi.org/10.1007/978-3-0348-7698-8_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01349967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009365586", 
              "https://doi.org/10.1007/bf01349967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-12678-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011943444", 
              "https://doi.org/10.1007/978-3-662-12678-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-12678-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011943444", 
              "https://doi.org/10.1007/978-3-662-12678-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017222504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017222504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2003.06.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020692391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7947-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021766530", 
              "https://doi.org/10.1007/978-3-0348-7947-7_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7947-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021766530", 
              "https://doi.org/10.1007/978-3-0348-7947-7_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.19931610110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025837130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.19770770116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027367955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/38/22/023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059079223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/38/22/023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059079223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/trans2/103/01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089181772"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008", 
        "datePublishedReg": "2008-01-01", 
        "description": "The class Ngk\u221e consists of all generalized Nevanlinna functions N with \u03ba negative squares for which the root space at \u221e of the self-adjoint relation in the minimal model (short for self-adjoint operator realization) of N contains a \u03ba-dimensional non-positive subspace. In this paper we discuss two specific models for the function N \u2208 Ngk\u221e: one associated with the irreducible representation of N and one associated with a regularized version of this representation which need not be irreducible. The state space in each of these models is a reproducing kernel Pontryagin space whose reproducing kernel is a matrix function constructed from the data in the representation.", 
        "editor": [
          {
            "familyName": "Behrndt", 
            "givenName": "Jussi", 
            "type": "Person"
          }, 
          {
            "familyName": "F\u00f6rster", 
            "givenName": "Karl-Heinz", 
            "type": "Person"
          }, 
          {
            "familyName": "Langer", 
            "givenName": "Heinz", 
            "type": "Person"
          }, 
          {
            "familyName": "Trunk", 
            "givenName": "Carsten", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-7643-8911-6_5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-7643-8910-9", 
            "978-3-7643-8911-6"
          ], 
          "name": "Spectral Theory in Inner Product Spaces and Applications", 
          "type": "Book"
        }, 
        "name": "Approximation of N\u03ba\u221e-functions I: Models and Regularization", 
        "pagination": "87-112", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-7643-8911-6_5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "75122b2e9a04976beeb5c7bf083a5f4618f33bf095fe00605c95a1c491f76959"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024574044"
            ]
          }
        ], 
        "publisher": {
          "location": "Basel", 
          "name": "Birkh\u00e4user Basel", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-7643-8911-6_5", 
          "https://app.dimensions.ai/details/publication/pub.1024574044"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T06:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43266_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-7643-8911-6_5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8911-6_5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8911-6_5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8911-6_5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8911-6_5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-7643-8911-6_5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nef4fd97c75c64fc2ab12d1f27cf3fc58
    4 schema:citation sg:pub.10.1007/978-3-0348-7698-8_15
    5 sg:pub.10.1007/978-3-0348-7947-7_5
    6 sg:pub.10.1007/978-3-0348-8413-6_8
    7 sg:pub.10.1007/978-3-662-12678-3
    8 sg:pub.10.1007/bf01349967
    9 https://doi.org/10.1002/mana.19770770116
    10 https://doi.org/10.1002/mana.19931610110
    11 https://doi.org/10.1006/jdeq.1999.3755
    12 https://doi.org/10.1016/j.jfa.2003.06.005
    13 https://doi.org/10.1016/s0022-1236(03)00068-5
    14 https://doi.org/10.1088/0305-4470/38/22/023
    15 https://doi.org/10.1090/trans2/103/01
    16 schema:datePublished 2008
    17 schema:datePublishedReg 2008-01-01
    18 schema:description The class Ngk∞ consists of all generalized Nevanlinna functions N with κ negative squares for which the root space at ∞ of the self-adjoint relation in the minimal model (short for self-adjoint operator realization) of N contains a κ-dimensional non-positive subspace. In this paper we discuss two specific models for the function N ∈ Ngk∞: one associated with the irreducible representation of N and one associated with a regularized version of this representation which need not be irreducible. The state space in each of these models is a reproducing kernel Pontryagin space whose reproducing kernel is a matrix function constructed from the data in the representation.
    19 schema:editor N6160a3c8ef3240a5be439f200a69cc77
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf Nf0ce6b682b0d4ffa834701b534aeee77
    24 schema:name Approximation of Nκ∞-functions I: Models and Regularization
    25 schema:pagination 87-112
    26 schema:productId N3887323449b6469e8baf53bbc827b288
    27 N4ca66fa6e4ea4b85985e21e9b291f8b6
    28 Ne518173411b04213b86aea42bfdb7682
    29 schema:publisher Ne6d66f5d0a9a4b69af9f5949de52c420
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024574044
    31 https://doi.org/10.1007/978-3-7643-8911-6_5
    32 schema:sdDatePublished 2019-04-16T06:16
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Nabb947dbb42c4ec7869fedf68076572f
    35 schema:url https://link.springer.com/10.1007%2F978-3-7643-8911-6_5
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N249cbdbb70be4ac6b9f0fbd394e5725c schema:familyName Langer
    40 schema:givenName Heinz
    41 rdf:type schema:Person
    42 N3546f243671f4fcfa40fdf9afbe6f0a3 rdf:first Ndfce957bef5940a0998b7809fdf0571b
    43 rdf:rest Nd922ac6b63c94c38ac467c4e0c7bc5d6
    44 N3887323449b6469e8baf53bbc827b288 schema:name readcube_id
    45 schema:value 75122b2e9a04976beeb5c7bf083a5f4618f33bf095fe00605c95a1c491f76959
    46 rdf:type schema:PropertyValue
    47 N4bb887a9f02341d7a6be2539b0cf02e7 rdf:first Nb69acee7b17f44388957297923242615
    48 rdf:rest rdf:nil
    49 N4ca66fa6e4ea4b85985e21e9b291f8b6 schema:name doi
    50 schema:value 10.1007/978-3-7643-8911-6_5
    51 rdf:type schema:PropertyValue
    52 N50fa1b20ee314bdfaae123def233fc61 schema:familyName Behrndt
    53 schema:givenName Jussi
    54 rdf:type schema:Person
    55 N6160a3c8ef3240a5be439f200a69cc77 rdf:first N50fa1b20ee314bdfaae123def233fc61
    56 rdf:rest N3546f243671f4fcfa40fdf9afbe6f0a3
    57 N7ab18e6e65fe49fcb22d9d12b280dbc7 rdf:first sg:person.011442625430.95
    58 rdf:rest Na2d6653ccc2345a69ca7a8f0e45e7053
    59 Na2d6653ccc2345a69ca7a8f0e45e7053 rdf:first sg:person.015771172577.94
    60 rdf:rest rdf:nil
    61 Na68a4d1b19e341fb9cd7fb821f4e9621 schema:name Department of theoretical Physics, State Pedagogical University, GSP 37, Str. Ulyanova 1, 603950, Nizhny Novgorod, Russia
    62 rdf:type schema:Organization
    63 Nabb947dbb42c4ec7869fedf68076572f schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Nb69acee7b17f44388957297923242615 schema:familyName Trunk
    66 schema:givenName Carsten
    67 rdf:type schema:Person
    68 Nd922ac6b63c94c38ac467c4e0c7bc5d6 rdf:first N249cbdbb70be4ac6b9f0fbd394e5725c
    69 rdf:rest N4bb887a9f02341d7a6be2539b0cf02e7
    70 Ndfce957bef5940a0998b7809fdf0571b schema:familyName Förster
    71 schema:givenName Karl-Heinz
    72 rdf:type schema:Person
    73 Ne518173411b04213b86aea42bfdb7682 schema:name dimensions_id
    74 schema:value pub.1024574044
    75 rdf:type schema:PropertyValue
    76 Ne6d66f5d0a9a4b69af9f5949de52c420 schema:location Basel
    77 schema:name Birkhäuser Basel
    78 rdf:type schema:Organisation
    79 Nef4fd97c75c64fc2ab12d1f27cf3fc58 rdf:first sg:person.013762723211.39
    80 rdf:rest N7ab18e6e65fe49fcb22d9d12b280dbc7
    81 Nf0ce6b682b0d4ffa834701b534aeee77 schema:isbn 978-3-7643-8910-9
    82 978-3-7643-8911-6
    83 schema:name Spectral Theory in Inner Product Spaces and Applications
    84 rdf:type schema:Book
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Pure Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:person.011442625430.95 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
    92 schema:familyName Luger
    93 schema:givenName Annemarie
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95
    95 rdf:type schema:Person
    96 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
    97 schema:familyName Dijksma
    98 schema:givenName Aad
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
    100 rdf:type schema:Person
    101 sg:person.015771172577.94 schema:affiliation Na68a4d1b19e341fb9cd7fb821f4e9621
    102 schema:familyName Shondin
    103 schema:givenName Yuri
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
    105 rdf:type schema:Person
    106 sg:pub.10.1007/978-3-0348-7698-8_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008400943
    107 https://doi.org/10.1007/978-3-0348-7698-8_15
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/978-3-0348-7947-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021766530
    110 https://doi.org/10.1007/978-3-0348-7947-7_5
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/978-3-0348-8413-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000870627
    113 https://doi.org/10.1007/978-3-0348-8413-6_8
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-3-662-12678-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011943444
    116 https://doi.org/10.1007/978-3-662-12678-3
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf01349967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009365586
    119 https://doi.org/10.1007/bf01349967
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1002/mana.19931610110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025837130
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1006/jdeq.1999.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159253
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.jfa.2003.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020692391
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/s0022-1236(03)00068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017222504
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1088/0305-4470/38/22/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059079223
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1090/trans2/103/01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089181772
    134 rdf:type schema:CreativeWork
    135 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
    136 schema:name Department of Mathematics, Lund Institute of Technology, Box 118, SE-221 00, Lund, Sweden
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
    139 schema:name Department of Mathematics, University of Groningen, P.O. Box 407, 9700, AK Groningen, The Netherlands
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...