Wiener-Hopf factorization and factorization indices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Harm Bart , Marinus A. Kaashoek , André C. M. Ran

ABSTRACT

This chapter concerns canonical as well as non-canonical Wiener-Hopf factorization of an operator-valued function which is analytic on a Cauchy contour. Such an operator function is given by a realization with a possibly infinite dimensional Banach space as state space, and with a bounded state operator and with bounded input-output operators. The first main result is a generalization to operator-valued functions of the canonical factorization theorem for rational matrix functions presented earlier in Section 3.1. In terms of the given realization, necessary and sufficient conditions are also presented in order that the operator function involved admits a (possibly non-canonical) Wiener-Hopf factorization. The corresponding factorization indices are described in terms of certain spectral invariants which are defined in terms of the realization but do only depend on the operator function and not on the particular choice of the realization. The analysis of these spectral invariants is one of the main themes of this chapter. More... »

PAGES

143-167

Book

TITLE

A State Space Approach to Canonical Factorization with Applications

ISBN

978-3-7643-8752-5
978-3-7643-8753-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8753-2_8

DOI

http://dx.doi.org/10.1007/978-3-7643-8753-2_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043451572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Econometrisch Instituut, Erasumus Universiteit Rotterdam, Postbus 1738, 3000 DR\u00a0Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bart", 
        "givenName": "Harm", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.12380.38", 
          "name": [
            "Department of Mathematics, FEW, Vrije Universiteit, De Boelelaan 1081A, 1081 HV\u00a0Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaashoek", 
        "givenName": "Marinus A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.12380.38", 
          "name": [
            "Department of Mathematics, FEW, Vrije Universiteit, De Boelelaan 1081A, 1081 HV\u00a0Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ran", 
        "givenName": "Andr\u00e9 C. M.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "This chapter concerns canonical as well as non-canonical Wiener-Hopf factorization of an operator-valued function which is analytic on a Cauchy contour. Such an operator function is given by a realization with a possibly infinite dimensional Banach space as state space, and with a bounded state operator and with bounded input-output operators. The first main result is a generalization to operator-valued functions of the canonical factorization theorem for rational matrix functions presented earlier in Section 3.1. In terms of the given realization, necessary and sufficient conditions are also presented in order that the operator function involved admits a (possibly non-canonical) Wiener-Hopf factorization. The corresponding factorization indices are described in terms of certain spectral invariants which are defined in terms of the realization but do only depend on the operator function and not on the particular choice of the realization. The analysis of these spectral invariants is one of the main themes of this chapter.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8753-2_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8752-5", 
        "978-3-7643-8753-2"
      ], 
      "name": "A State Space Approach to Canonical Factorization with Applications", 
      "type": "Book"
    }, 
    "name": "Wiener-Hopf factorization and factorization indices", 
    "pagination": "143-167", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8753-2_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cef9eeae32a3446e4410f39d42e6548d64f667c1a1a6bbbe8cd6a93100eee35b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043451572"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8753-2_8", 
      "https://app.dimensions.ai/details/publication/pub.1043451572"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000074.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8753-2_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8753-2_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8753-2_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8753-2_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8753-2_8'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8753-2_8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N45c11929d6734807a00547c9f722366e
4 schema:datePublished 2010
5 schema:datePublishedReg 2010-01-01
6 schema:description This chapter concerns canonical as well as non-canonical Wiener-Hopf factorization of an operator-valued function which is analytic on a Cauchy contour. Such an operator function is given by a realization with a possibly infinite dimensional Banach space as state space, and with a bounded state operator and with bounded input-output operators. The first main result is a generalization to operator-valued functions of the canonical factorization theorem for rational matrix functions presented earlier in Section 3.1. In terms of the given realization, necessary and sufficient conditions are also presented in order that the operator function involved admits a (possibly non-canonical) Wiener-Hopf factorization. The corresponding factorization indices are described in terms of certain spectral invariants which are defined in terms of the realization but do only depend on the operator function and not on the particular choice of the realization. The analysis of these spectral invariants is one of the main themes of this chapter.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N3cd978d1243140d0a0a13e67e2f852af
11 schema:name Wiener-Hopf factorization and factorization indices
12 schema:pagination 143-167
13 schema:productId N6e999bfb13d948ef94480af07009e90d
14 N9926574f9cc04cdda7041a2ba76693c8
15 Nb33887be0353421a91aa2699c018a24d
16 schema:publisher Ne5c42f0f4612406a89606051f77c436f
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043451572
18 https://doi.org/10.1007/978-3-7643-8753-2_8
19 schema:sdDatePublished 2019-04-15T21:47
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N63d90ef3ee89477285f73c1997284b3d
22 schema:url http://link.springer.com/10.1007/978-3-7643-8753-2_8
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N3cd978d1243140d0a0a13e67e2f852af schema:isbn 978-3-7643-8752-5
27 978-3-7643-8753-2
28 schema:name A State Space Approach to Canonical Factorization with Applications
29 rdf:type schema:Book
30 N45c11929d6734807a00547c9f722366e rdf:first N8ddf1c82c7d34644b8f704436269a091
31 rdf:rest N8561a0c009bd4c7693b8a7f8945ca7d6
32 N5f07dd43211744e0b1f9fb959d12d73c rdf:first Nb5bc2a44fbc544e2b94a825bccfce5b7
33 rdf:rest rdf:nil
34 N63d90ef3ee89477285f73c1997284b3d schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N6e999bfb13d948ef94480af07009e90d schema:name dimensions_id
37 schema:value pub.1043451572
38 rdf:type schema:PropertyValue
39 N79ea046bc01e440490d1cf30d825d206 schema:name Econometrisch Instituut, Erasumus Universiteit Rotterdam, Postbus 1738, 3000 DR Rotterdam, The Netherlands
40 rdf:type schema:Organization
41 N8561a0c009bd4c7693b8a7f8945ca7d6 rdf:first Nd657c1a7a67f49a392d8d39ba288dbd1
42 rdf:rest N5f07dd43211744e0b1f9fb959d12d73c
43 N8ddf1c82c7d34644b8f704436269a091 schema:affiliation N79ea046bc01e440490d1cf30d825d206
44 schema:familyName Bart
45 schema:givenName Harm
46 rdf:type schema:Person
47 N9926574f9cc04cdda7041a2ba76693c8 schema:name doi
48 schema:value 10.1007/978-3-7643-8753-2_8
49 rdf:type schema:PropertyValue
50 Nb33887be0353421a91aa2699c018a24d schema:name readcube_id
51 schema:value cef9eeae32a3446e4410f39d42e6548d64f667c1a1a6bbbe8cd6a93100eee35b
52 rdf:type schema:PropertyValue
53 Nb5bc2a44fbc544e2b94a825bccfce5b7 schema:affiliation https://www.grid.ac/institutes/grid.12380.38
54 schema:familyName Ran
55 schema:givenName André C. M.
56 rdf:type schema:Person
57 Nd657c1a7a67f49a392d8d39ba288dbd1 schema:affiliation https://www.grid.ac/institutes/grid.12380.38
58 schema:familyName Kaashoek
59 schema:givenName Marinus A.
60 rdf:type schema:Person
61 Ne5c42f0f4612406a89606051f77c436f schema:location Basel
62 schema:name Birkhäuser Basel
63 rdf:type schema:Organisation
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 https://www.grid.ac/institutes/grid.12380.38 schema:alternateName VU University Amsterdam
71 schema:name Department of Mathematics, FEW, Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...