The Wasserstein Distance and its Behaviour along Geodesics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

In this chapter we will introduce the p-th Wasserstein distance W p (μ, ν) between two measures μ, ν ∈ (X). The first section is devoted to its preliminary properties, in connection with the optimal transportation problems studied in the previous chapter and with narrow convergence: the main topological results are valid in general metric spaces. More... »

PAGES

151-165

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_9

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005375230


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In this chapter we will introduce the p-th Wasserstein distance W p (\u03bc, \u03bd) between two measures \u03bc, \u03bd \u2208 (X). The first section is devoted to its preliminary properties, in connection with the optimal transportation problems studied in the previous chapter and with narrow convergence: the main topological results are valid in general metric spaces.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "The Wasserstein Distance and its Behaviour along Geodesics", 
    "pagination": "151-165", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "199bebaced8d0dd9ba69b8cc62746fad11db886ae134625e2c0885b7afe777f9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005375230"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_9", 
      "https://app.dimensions.ai/details/publication/pub.1005375230"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000009.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_9'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N17a7cef728564100af8a8a772a69b679
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description In this chapter we will introduce the p-th Wasserstein distance W p (μ, ν) between two measures μ, ν ∈ (X). The first section is devoted to its preliminary properties, in connection with the optimal transportation problems studied in the previous chapter and with narrow convergence: the main topological results are valid in general metric spaces.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne5d05e69a7754cc390dfaa0968eef842
11 schema:name The Wasserstein Distance and its Behaviour along Geodesics
12 schema:pagination 151-165
13 schema:productId N39b1853733794d0a88913c2437375ab9
14 N5d90f9bb9ac1435aadee892f216833da
15 Nfa7d865c0dd34594b72591823031a74c
16 schema:publisher Nbe7ffe88de254145840940782f0f19c5
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005375230
18 https://doi.org/10.1007/978-3-7643-8722-8_9
19 schema:sdDatePublished 2019-04-15T14:09
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N9f559f7f87dd4d2eb99f183072cdede5
22 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_9
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N17a7cef728564100af8a8a772a69b679 rdf:first sg:person.012621721115.68
27 rdf:rest N71a8ff167385456ab4bf4eee4622fa3a
28 N39b1853733794d0a88913c2437375ab9 schema:name doi
29 schema:value 10.1007/978-3-7643-8722-8_9
30 rdf:type schema:PropertyValue
31 N5d90f9bb9ac1435aadee892f216833da schema:name readcube_id
32 schema:value 199bebaced8d0dd9ba69b8cc62746fad11db886ae134625e2c0885b7afe777f9
33 rdf:type schema:PropertyValue
34 N71a8ff167385456ab4bf4eee4622fa3a rdf:first sg:person.015012242515.20
35 rdf:rest N90bf0b269b194777a52edefc34485963
36 N90bf0b269b194777a52edefc34485963 rdf:first sg:person.015505046621.07
37 rdf:rest rdf:nil
38 N9f559f7f87dd4d2eb99f183072cdede5 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Nbe7ffe88de254145840940782f0f19c5 schema:location Basel
41 schema:name Birkhäuser Basel
42 rdf:type schema:Organisation
43 Ne5d05e69a7754cc390dfaa0968eef842 schema:isbn 978-3-7643-8721-1
44 978-3-7643-8722-8
45 schema:name Gradient Flows
46 rdf:type schema:Book
47 Nfa7d865c0dd34594b72591823031a74c schema:name dimensions_id
48 schema:value pub.1005375230
49 rdf:type schema:PropertyValue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:person.012621721115.68 schema:familyName Ambrosio
57 schema:givenName Luigi
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
59 rdf:type schema:Person
60 sg:person.015012242515.20 schema:familyName Gigli
61 schema:givenName Nicola
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
63 rdf:type schema:Person
64 sg:person.015505046621.07 schema:familyName Savaré
65 schema:givenName Giuseppe
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
67 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...