The Optimal Transportation Problem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

Let X, Y be separable metric spaces such that any Borel probability measure in X, Y is tight (5.1.9), i.e. Radon spaces, according to Definition 5.1.4, and let c : X × Y → [0,+∞] be a Borel cost function. Given μ ∈ (X), ν ∈ (Y) the optimal transport problem, in Monge’s formulation, is given by More... »

PAGES

133-150

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_8

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016408780


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Let X, Y be separable metric spaces such that any Borel probability measure in X, Y is tight (5.1.9), i.e. Radon spaces, according to Definition 5.1.4, and let c : X \u00d7 Y \u2192 [0,+\u221e] be a Borel cost function. Given \u03bc \u2208 (X), \u03bd \u2208 (Y) the optimal transport problem, in Monge\u2019s formulation, is given by", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "The Optimal Transportation Problem", 
    "pagination": "133-150", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4e2e916c0ee40f0e0e3919f59cde262d9d7e1bf8f741e0ba088ad37a2c2f35d7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016408780"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_8", 
      "https://app.dimensions.ai/details/publication/pub.1016408780"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000028.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_8'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      20 PREDICATES      24 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_8 schema:author N99d59ec072fd41cebeb92294b6096059
2 schema:datePublished 2008
3 schema:datePublishedReg 2008-01-01
4 schema:description Let X, Y be separable metric spaces such that any Borel probability measure in X, Y is tight (5.1.9), i.e. Radon spaces, according to Definition 5.1.4, and let c : X × Y → [0,+∞] be a Borel cost function. Given μ ∈ (X), ν ∈ (Y) the optimal transport problem, in Monge’s formulation, is given by
5 schema:genre chapter
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf N68862e79d9f4422ba75ff1a231f0ebfd
9 schema:name The Optimal Transportation Problem
10 schema:pagination 133-150
11 schema:productId N061577db0a174cf4aceacbb8fdd67bf2
12 N71622caacb1c4aeba054c51d3a55fb5b
13 N80ec630fd3f84823abb6befca5ff3745
14 schema:publisher Nacdf398e4f1e414abddc3169e60f1cf6
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016408780
16 https://doi.org/10.1007/978-3-7643-8722-8_8
17 schema:sdDatePublished 2019-04-15T19:51
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher N718d83565b484018aa29ffd9eaeab4bb
20 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_8
21 sgo:license sg:explorer/license/
22 sgo:sdDataset chapters
23 rdf:type schema:Chapter
24 N061577db0a174cf4aceacbb8fdd67bf2 schema:name readcube_id
25 schema:value 4e2e916c0ee40f0e0e3919f59cde262d9d7e1bf8f741e0ba088ad37a2c2f35d7
26 rdf:type schema:PropertyValue
27 N2c2e2c567a7e42f4a2f1b0bab7e8158b rdf:first sg:person.015505046621.07
28 rdf:rest rdf:nil
29 N68862e79d9f4422ba75ff1a231f0ebfd schema:isbn 978-3-7643-8721-1
30 978-3-7643-8722-8
31 schema:name Gradient Flows
32 rdf:type schema:Book
33 N71622caacb1c4aeba054c51d3a55fb5b schema:name dimensions_id
34 schema:value pub.1016408780
35 rdf:type schema:PropertyValue
36 N718d83565b484018aa29ffd9eaeab4bb schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N80ec630fd3f84823abb6befca5ff3745 schema:name doi
39 schema:value 10.1007/978-3-7643-8722-8_8
40 rdf:type schema:PropertyValue
41 N99d59ec072fd41cebeb92294b6096059 rdf:first sg:person.012621721115.68
42 rdf:rest Ndd219be59cf345d0940aa18f60d85994
43 Nacdf398e4f1e414abddc3169e60f1cf6 schema:location Basel
44 schema:name Birkhäuser Basel
45 rdf:type schema:Organisation
46 Ndd219be59cf345d0940aa18f60d85994 rdf:first sg:person.015012242515.20
47 rdf:rest N2c2e2c567a7e42f4a2f1b0bab7e8158b
48 sg:person.012621721115.68 schema:familyName Ambrosio
49 schema:givenName Luigi
50 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
51 rdf:type schema:Person
52 sg:person.015012242515.20 schema:familyName Gigli
53 schema:givenName Nicola
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
55 rdf:type schema:Person
56 sg:person.015505046621.07 schema:familyName Savaré
57 schema:givenName Giuseppe
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
59 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...