Uniqueness, Generation of Contraction Semigroups, Error Estimates View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

In all this section we consider the “quadratic” approximation scheme (2.0.3b), (2.0.4) for 2-curves of maximal slope and we identify the “weak” topology σ with the “strong” one induced by the distance d as in Remark 2.1.1: thus we are assuming that

PAGES

75-102

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_6

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003330885


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In all this section we consider the \u201cquadratic\u201d approximation scheme (2.0.3b), (2.0.4) for 2-curves of maximal slope and we identify the \u201cweak\u201d topology \u03c3 with the \u201cstrong\u201d one induced by the distance d as in Remark 2.1.1: thus we are assuming that", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Uniqueness, Generation of Contraction Semigroups, Error Estimates", 
    "pagination": "75-102", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0fddcc4efdd63d3bf38bced0fa9949992042f40b8a6a89716572c10d73f242a5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003330885"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_6", 
      "https://app.dimensions.ai/details/publication/pub.1003330885"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000005.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_6'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      20 PREDICATES      24 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_6 schema:author N2ed301e924f54830a69f9f08092f1ec5
2 schema:datePublished 2008
3 schema:datePublishedReg 2008-01-01
4 schema:description In all this section we consider the “quadratic” approximation scheme (2.0.3b), (2.0.4) for 2-curves of maximal slope and we identify the “weak” topology σ with the “strong” one induced by the distance d as in Remark 2.1.1: thus we are assuming that
5 schema:genre chapter
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf N303c266a72d2444882b95613c74adfa6
9 schema:name Uniqueness, Generation of Contraction Semigroups, Error Estimates
10 schema:pagination 75-102
11 schema:productId N7382a0b8913e40cba216a0469d19e9ab
12 N805dcd6c198141b0906e86d72f99e0ba
13 Nf40c44e4da554467b38bc5568c2c3d91
14 schema:publisher Nb7814e76f38a4cc3b07287fb046c04aa
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003330885
16 https://doi.org/10.1007/978-3-7643-8722-8_6
17 schema:sdDatePublished 2019-04-15T18:53
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher N36988d54770242769a7e15f2a9594f86
20 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_6
21 sgo:license sg:explorer/license/
22 sgo:sdDataset chapters
23 rdf:type schema:Chapter
24 N2ed301e924f54830a69f9f08092f1ec5 rdf:first sg:person.012621721115.68
25 rdf:rest N8b66d6bfbfa44fe5817d1b128f35f07e
26 N303c266a72d2444882b95613c74adfa6 schema:isbn 978-3-7643-8721-1
27 978-3-7643-8722-8
28 schema:name Gradient Flows
29 rdf:type schema:Book
30 N36988d54770242769a7e15f2a9594f86 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N7382a0b8913e40cba216a0469d19e9ab schema:name doi
33 schema:value 10.1007/978-3-7643-8722-8_6
34 rdf:type schema:PropertyValue
35 N76d15101624642d398457215310d0861 rdf:first sg:person.015505046621.07
36 rdf:rest rdf:nil
37 N805dcd6c198141b0906e86d72f99e0ba schema:name dimensions_id
38 schema:value pub.1003330885
39 rdf:type schema:PropertyValue
40 N8b66d6bfbfa44fe5817d1b128f35f07e rdf:first sg:person.015012242515.20
41 rdf:rest N76d15101624642d398457215310d0861
42 Nb7814e76f38a4cc3b07287fb046c04aa schema:location Basel
43 schema:name Birkhäuser Basel
44 rdf:type schema:Organisation
45 Nf40c44e4da554467b38bc5568c2c3d91 schema:name readcube_id
46 schema:value 0fddcc4efdd63d3bf38bced0fa9949992042f40b8a6a89716572c10d73f242a5
47 rdf:type schema:PropertyValue
48 sg:person.012621721115.68 schema:familyName Ambrosio
49 schema:givenName Luigi
50 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
51 rdf:type schema:Person
52 sg:person.015012242515.20 schema:familyName Gigli
53 schema:givenName Nicola
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
55 rdf:type schema:Person
56 sg:person.015505046621.07 schema:familyName Savaré
57 schema:givenName Giuseppe
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
59 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...