Proofs of the Convergence Theorems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

We divide the proof of the main convergence theorems in four steps: first of all, we study a single minimization problem of the scheme (2.0.4); stability estimates are then derived for discrete solutions which yield Proposition 2.2.3 by a compactness argument. Finally, convergence is obtained by combining the a priori energy estimates with the gradient properties of the relaxed slope. We will conclude this section with the proof of Theorem 2.4.15. More... »

PAGES

59-74

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_5

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002375709


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "We divide the proof of the main convergence theorems in four steps: first of all, we study a single minimization problem of the scheme (2.0.4); stability estimates are then derived for discrete solutions which yield Proposition 2.2.3 by a compactness argument. Finally, convergence is obtained by combining the a priori energy estimates with the gradient properties of the relaxed slope. We will conclude this section with the proof of Theorem 2.4.15.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Proofs of the Convergence Theorems", 
    "pagination": "59-74", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0b4fcf9879d36af9e4b071a846448cae810c1fe6b08f5381cf3329f318584501"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002375709"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_5", 
      "https://app.dimensions.ai/details/publication/pub.1002375709"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000004.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_5'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N614e33c702074d6c85c29cafd3f064f4
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description We divide the proof of the main convergence theorems in four steps: first of all, we study a single minimization problem of the scheme (2.0.4); stability estimates are then derived for discrete solutions which yield Proposition 2.2.3 by a compactness argument. Finally, convergence is obtained by combining the a priori energy estimates with the gradient properties of the relaxed slope. We will conclude this section with the proof of Theorem 2.4.15.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N704f1209ca5a4c10b5aa84918bf09104
11 schema:name Proofs of the Convergence Theorems
12 schema:pagination 59-74
13 schema:productId N535cbc788d5341059bd3e542c9a4fee4
14 N88666dd5cd82493db99b528fc749c5dd
15 Naa79b5e7250b49f89551c0f3907a4b5f
16 schema:publisher Nde96232f330643868ac7d880e94a4393
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002375709
18 https://doi.org/10.1007/978-3-7643-8722-8_5
19 schema:sdDatePublished 2019-04-15T13:12
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N1bcf316f72934ad99d5288b3f94c7b78
22 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_5
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N1328882266a3424a921376845f638844 rdf:first sg:person.015505046621.07
27 rdf:rest rdf:nil
28 N1bcf316f72934ad99d5288b3f94c7b78 schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N535cbc788d5341059bd3e542c9a4fee4 schema:name readcube_id
31 schema:value 0b4fcf9879d36af9e4b071a846448cae810c1fe6b08f5381cf3329f318584501
32 rdf:type schema:PropertyValue
33 N614e33c702074d6c85c29cafd3f064f4 rdf:first sg:person.012621721115.68
34 rdf:rest N64d0aba771c543cf95625ad2e6cdec6e
35 N64d0aba771c543cf95625ad2e6cdec6e rdf:first sg:person.015012242515.20
36 rdf:rest N1328882266a3424a921376845f638844
37 N704f1209ca5a4c10b5aa84918bf09104 schema:isbn 978-3-7643-8721-1
38 978-3-7643-8722-8
39 schema:name Gradient Flows
40 rdf:type schema:Book
41 N88666dd5cd82493db99b528fc749c5dd schema:name doi
42 schema:value 10.1007/978-3-7643-8722-8_5
43 rdf:type schema:PropertyValue
44 Naa79b5e7250b49f89551c0f3907a4b5f schema:name dimensions_id
45 schema:value pub.1002375709
46 rdf:type schema:PropertyValue
47 Nde96232f330643868ac7d880e94a4393 schema:location Basel
48 schema:name Birkhäuser Basel
49 rdf:type schema:Organisation
50 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
51 schema:name Chemical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
54 schema:name Physical Chemistry (incl. Structural)
55 rdf:type schema:DefinedTerm
56 sg:person.012621721115.68 schema:familyName Ambrosio
57 schema:givenName Luigi
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
59 rdf:type schema:Person
60 sg:person.015012242515.20 schema:familyName Gigli
61 schema:givenName Nicola
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
63 rdf:type schema:Person
64 sg:person.015505046621.07 schema:familyName Savaré
65 schema:givenName Giuseppe
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
67 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...