Existence of Curves of Maximal Slope and their Variational Approximation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

The main object of our investigation is the solution of the following Cauchy problem in the complete metric space ( , d): Problem 2.0.1. Given a functional φ: → (−∞,+∞] and an initial datum u 0 ∈ D(φ), find a (p-)curve u of maximal slope in (0,+∞) for φ such that u(0+) = u 0. More... »

PAGES

39-57

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036034955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The main object of our investigation is the solution of the following Cauchy problem in the complete metric space ( , d): Problem 2.0.1. Given a functional \u03c6: \u2192 (\u2212\u221e,+\u221e] and an initial datum u 0 \u2208 D(\u03c6), find a (p-)curve u of maximal slope in (0,+\u221e) for \u03c6 such that u(0+) = u 0.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Existence of Curves of Maximal Slope and their Variational Approximation", 
    "pagination": "39-57", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aba81863dc0476aaabc17ac98cb5f327bc90010e2ea898cd32ef0cbd0f7d667d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036034955"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_4", 
      "https://app.dimensions.ai/details/publication/pub.1036034955"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000062.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      20 PREDICATES      24 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_4 schema:author Ncf8375e65c2140d4bd59a18600eda778
2 schema:datePublished 2008
3 schema:datePublishedReg 2008-01-01
4 schema:description The main object of our investigation is the solution of the following Cauchy problem in the complete metric space ( , d): Problem 2.0.1. Given a functional φ: → (−∞,+∞] and an initial datum u 0 ∈ D(φ), find a (p-)curve u of maximal slope in (0,+∞) for φ such that u(0+) = u 0.
5 schema:genre chapter
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf N8c38a3b51a8a415ab5ce2af76a847f89
9 schema:name Existence of Curves of Maximal Slope and their Variational Approximation
10 schema:pagination 39-57
11 schema:productId N4407dd483432480c8cbaf0df420d2b7c
12 Na809d6700a4a43c99d07ca137c613180
13 Ne2378107647d4687967a9432f165c633
14 schema:publisher N45afcede30ca42539fd5e8639cff652e
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036034955
16 https://doi.org/10.1007/978-3-7643-8722-8_4
17 schema:sdDatePublished 2019-04-15T19:54
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher N524c4428ee1849f697ba579b1b6b9e10
20 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_4
21 sgo:license sg:explorer/license/
22 sgo:sdDataset chapters
23 rdf:type schema:Chapter
24 N054648c902094f52ad84973e88e269e1 rdf:first sg:person.015012242515.20
25 rdf:rest N81dce29056914e00bd9ad15a5d42cf56
26 N4407dd483432480c8cbaf0df420d2b7c schema:name dimensions_id
27 schema:value pub.1036034955
28 rdf:type schema:PropertyValue
29 N45afcede30ca42539fd5e8639cff652e schema:location Basel
30 schema:name Birkhäuser Basel
31 rdf:type schema:Organisation
32 N524c4428ee1849f697ba579b1b6b9e10 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N81dce29056914e00bd9ad15a5d42cf56 rdf:first sg:person.015505046621.07
35 rdf:rest rdf:nil
36 N8c38a3b51a8a415ab5ce2af76a847f89 schema:isbn 978-3-7643-8721-1
37 978-3-7643-8722-8
38 schema:name Gradient Flows
39 rdf:type schema:Book
40 Na809d6700a4a43c99d07ca137c613180 schema:name readcube_id
41 schema:value aba81863dc0476aaabc17ac98cb5f327bc90010e2ea898cd32ef0cbd0f7d667d
42 rdf:type schema:PropertyValue
43 Ncf8375e65c2140d4bd59a18600eda778 rdf:first sg:person.012621721115.68
44 rdf:rest N054648c902094f52ad84973e88e269e1
45 Ne2378107647d4687967a9432f165c633 schema:name doi
46 schema:value 10.1007/978-3-7643-8722-8_4
47 rdf:type schema:PropertyValue
48 sg:person.012621721115.68 schema:familyName Ambrosio
49 schema:givenName Luigi
50 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
51 rdf:type schema:Person
52 sg:person.015012242515.20 schema:familyName Gigli
53 schema:givenName Nicola
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
55 rdf:type schema:Person
56 sg:person.015505046621.07 schema:familyName Savaré
57 schema:givenName Giuseppe
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
59 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...