Existence of Curves of Maximal Slope and their Variational Approximation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

The main object of our investigation is the solution of the following Cauchy problem in the complete metric space ( , d): Problem 2.0.1. Given a functional φ: → (−∞,+∞] and an initial datum u 0 ∈ D(φ), find a (p-)curve u of maximal slope in (0,+∞) for φ such that u(0+) = u 0. More... »

PAGES

39-57

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036034955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The main object of our investigation is the solution of the following Cauchy problem in the complete metric space ( , d): Problem 2.0.1. Given a functional \u03c6: \u2192 (\u2212\u221e,+\u221e] and an initial datum u 0 \u2208 D(\u03c6), find a (p-)curve u of maximal slope in (0,+\u221e) for \u03c6 such that u(0+) = u 0.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Existence of Curves of Maximal Slope and their Variational Approximation", 
    "pagination": "39-57", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aba81863dc0476aaabc17ac98cb5f327bc90010e2ea898cd32ef0cbd0f7d667d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036034955"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_4", 
      "https://app.dimensions.ai/details/publication/pub.1036034955"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000062.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      20 PREDICATES      24 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_4 schema:author N899538721a4d4d91a32114a076776b0a
2 schema:datePublished 2008
3 schema:datePublishedReg 2008-01-01
4 schema:description The main object of our investigation is the solution of the following Cauchy problem in the complete metric space ( , d): Problem 2.0.1. Given a functional φ: → (−∞,+∞] and an initial datum u 0 ∈ D(φ), find a (p-)curve u of maximal slope in (0,+∞) for φ such that u(0+) = u 0.
5 schema:genre chapter
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf N839f2b7ae9e6413eab281fb3b5f35c22
9 schema:name Existence of Curves of Maximal Slope and their Variational Approximation
10 schema:pagination 39-57
11 schema:productId N683368a9d68f4abf86fa887291d68f11
12 N69ffc1c4e94049219f59d62aab4578aa
13 Nce9b1ba07e2f4331a11a313df15b5f42
14 schema:publisher N75f72930069646e48cbf2f66cbc88d73
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036034955
16 https://doi.org/10.1007/978-3-7643-8722-8_4
17 schema:sdDatePublished 2019-04-15T19:54
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher N0d19f7627e034f91ad99c59b94c9af97
20 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_4
21 sgo:license sg:explorer/license/
22 sgo:sdDataset chapters
23 rdf:type schema:Chapter
24 N0d19f7627e034f91ad99c59b94c9af97 schema:name Springer Nature - SN SciGraph project
25 rdf:type schema:Organization
26 N683368a9d68f4abf86fa887291d68f11 schema:name dimensions_id
27 schema:value pub.1036034955
28 rdf:type schema:PropertyValue
29 N69ffc1c4e94049219f59d62aab4578aa schema:name readcube_id
30 schema:value aba81863dc0476aaabc17ac98cb5f327bc90010e2ea898cd32ef0cbd0f7d667d
31 rdf:type schema:PropertyValue
32 N75f72930069646e48cbf2f66cbc88d73 schema:location Basel
33 schema:name Birkhäuser Basel
34 rdf:type schema:Organisation
35 N839f2b7ae9e6413eab281fb3b5f35c22 schema:isbn 978-3-7643-8721-1
36 978-3-7643-8722-8
37 schema:name Gradient Flows
38 rdf:type schema:Book
39 N899538721a4d4d91a32114a076776b0a rdf:first sg:person.012621721115.68
40 rdf:rest Ne4b59ba6a6fd415aa0185a801a5d358a
41 Nc2076e7c5d6840b58e0876dad2c0d898 rdf:first sg:person.015505046621.07
42 rdf:rest rdf:nil
43 Nce9b1ba07e2f4331a11a313df15b5f42 schema:name doi
44 schema:value 10.1007/978-3-7643-8722-8_4
45 rdf:type schema:PropertyValue
46 Ne4b59ba6a6fd415aa0185a801a5d358a rdf:first sg:person.015012242515.20
47 rdf:rest Nc2076e7c5d6840b58e0876dad2c0d898
48 sg:person.012621721115.68 schema:familyName Ambrosio
49 schema:givenName Luigi
50 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
51 rdf:type schema:Person
52 sg:person.015012242515.20 schema:familyName Gigli
53 schema:givenName Nicola
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
55 rdf:type schema:Person
56 sg:person.015505046621.07 schema:familyName Savaré
57 schema:givenName Giuseppe
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
59 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...