Existence of Curves of Maximal Slope and their Variational Approximation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

The main object of our investigation is the solution of the following Cauchy problem in the complete metric space ( , d): Problem 2.0.1. Given a functional φ: → (−∞,+∞] and an initial datum u 0 ∈ D(φ), find a (p-)curve u of maximal slope in (0,+∞) for φ such that u(0+) = u 0. More... »

PAGES

39-57

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036034955


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The main object of our investigation is the solution of the following Cauchy problem in the complete metric space ( , d): Problem 2.0.1. Given a functional \u03c6: \u2192 (\u2212\u221e,+\u221e] and an initial datum u 0 \u2208 D(\u03c6), find a (p-)curve u of maximal slope in (0,+\u221e) for \u03c6 such that u(0+) = u 0.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Existence of Curves of Maximal Slope and their Variational Approximation", 
    "pagination": "39-57", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aba81863dc0476aaabc17ac98cb5f327bc90010e2ea898cd32ef0cbd0f7d667d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036034955"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_4", 
      "https://app.dimensions.ai/details/publication/pub.1036034955"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000062.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_4'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      20 PREDICATES      24 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_4 schema:author N776e4ba4cbcb4cdc89ac37a84311f4d1
2 schema:datePublished 2008
3 schema:datePublishedReg 2008-01-01
4 schema:description The main object of our investigation is the solution of the following Cauchy problem in the complete metric space ( , d): Problem 2.0.1. Given a functional φ: → (−∞,+∞] and an initial datum u 0 ∈ D(φ), find a (p-)curve u of maximal slope in (0,+∞) for φ such that u(0+) = u 0.
5 schema:genre chapter
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf Nc30d79a91d2d4d6ab81861495b54f990
9 schema:name Existence of Curves of Maximal Slope and their Variational Approximation
10 schema:pagination 39-57
11 schema:productId N80169b403b4e44c2b6e70aa759d7abb6
12 Ndcbf10b08b714c30bac688af157c4397
13 Nf428928c10244435857c93c9da556e2b
14 schema:publisher Nac62c807edea4dc6a354024e0515a309
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036034955
16 https://doi.org/10.1007/978-3-7643-8722-8_4
17 schema:sdDatePublished 2019-04-15T19:54
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher Na6c13e75a50b40cbbd6f980679ca8fca
20 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_4
21 sgo:license sg:explorer/license/
22 sgo:sdDataset chapters
23 rdf:type schema:Chapter
24 N4d2b59e15c104e50aec70f133ac0892b rdf:first sg:person.015505046621.07
25 rdf:rest rdf:nil
26 N776e4ba4cbcb4cdc89ac37a84311f4d1 rdf:first sg:person.012621721115.68
27 rdf:rest N9c1df27ead314f09bb950da54fd072a9
28 N80169b403b4e44c2b6e70aa759d7abb6 schema:name doi
29 schema:value 10.1007/978-3-7643-8722-8_4
30 rdf:type schema:PropertyValue
31 N9c1df27ead314f09bb950da54fd072a9 rdf:first sg:person.015012242515.20
32 rdf:rest N4d2b59e15c104e50aec70f133ac0892b
33 Na6c13e75a50b40cbbd6f980679ca8fca schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 Nac62c807edea4dc6a354024e0515a309 schema:location Basel
36 schema:name Birkhäuser Basel
37 rdf:type schema:Organisation
38 Nc30d79a91d2d4d6ab81861495b54f990 schema:isbn 978-3-7643-8721-1
39 978-3-7643-8722-8
40 schema:name Gradient Flows
41 rdf:type schema:Book
42 Ndcbf10b08b714c30bac688af157c4397 schema:name readcube_id
43 schema:value aba81863dc0476aaabc17ac98cb5f327bc90010e2ea898cd32ef0cbd0f7d667d
44 rdf:type schema:PropertyValue
45 Nf428928c10244435857c93c9da556e2b schema:name dimensions_id
46 schema:value pub.1036034955
47 rdf:type schema:PropertyValue
48 sg:person.012621721115.68 schema:familyName Ambrosio
49 schema:givenName Luigi
50 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
51 rdf:type schema:Person
52 sg:person.015012242515.20 schema:familyName Gigli
53 schema:givenName Nicola
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
55 rdf:type schema:Person
56 sg:person.015505046621.07 schema:familyName Savaré
57 schema:givenName Giuseppe
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
59 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...