Curves and Gradients in Metric Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

As we briefly discussed in the introduction, the notion of gradient flows in a metric space relies on two elementary but basic concepts: the metric derivative of an absolutely continuous curve with values in and the upper gradients of a functional defined in . The related definitions are presented in the next two sections (a more detailed treatment of this topic can be found for instance in [20]); the last one deals with curves of maximal slope. More... »

PAGES

23-37

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_3

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036686461


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "As we briefly discussed in the introduction, the notion of gradient flows in a metric space relies on two elementary but basic concepts: the metric derivative of an absolutely continuous curve with values in and the upper gradients of a functional defined in . The related definitions are presented in the next two sections (a more detailed treatment of this topic can be found for instance in [20]); the last one deals with curves of maximal slope.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Curves and Gradients in Metric Spaces", 
    "pagination": "23-37", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aec2c4ba9eab9722b97652aa3f2537e688f44ee41c9327aa758d77ef51896b70"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036686461"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_3", 
      "https://app.dimensions.ai/details/publication/pub.1036686461"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000063.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_3'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_3 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Ne93c9eab6a4e4cf396bb4a2684f1e8a3
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description As we briefly discussed in the introduction, the notion of gradient flows in a metric space relies on two elementary but basic concepts: the metric derivative of an absolutely continuous curve with values in and the upper gradients of a functional defined in . The related definitions are presented in the next two sections (a more detailed treatment of this topic can be found for instance in [20]); the last one deals with curves of maximal slope.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne18b345486e04f4bbb8f0abe1436662c
11 schema:name Curves and Gradients in Metric Spaces
12 schema:pagination 23-37
13 schema:productId N4203bb5fc3a2486f824d1057f8806458
14 Nf2af7f565ba64254979177c5a85f0122
15 Nf67649bc12c34d9b9eb42637597691bc
16 schema:publisher Nfbc0b818521941beade06f493ea6cdf1
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036686461
18 https://doi.org/10.1007/978-3-7643-8722-8_3
19 schema:sdDatePublished 2019-04-15T17:59
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N4c0a3c0c3f0d48d2bbd06f23e7db6032
22 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_3
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N4203bb5fc3a2486f824d1057f8806458 schema:name doi
27 schema:value 10.1007/978-3-7643-8722-8_3
28 rdf:type schema:PropertyValue
29 N4c0a3c0c3f0d48d2bbd06f23e7db6032 schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N7bec6d29dab04205ac888d970e61c07f rdf:first sg:person.015505046621.07
32 rdf:rest rdf:nil
33 Nddca23bb15854e84b4ee565f107b9b31 rdf:first sg:person.015012242515.20
34 rdf:rest N7bec6d29dab04205ac888d970e61c07f
35 Ne18b345486e04f4bbb8f0abe1436662c schema:isbn 978-3-7643-8721-1
36 978-3-7643-8722-8
37 schema:name Gradient Flows
38 rdf:type schema:Book
39 Ne93c9eab6a4e4cf396bb4a2684f1e8a3 rdf:first sg:person.012621721115.68
40 rdf:rest Nddca23bb15854e84b4ee565f107b9b31
41 Nf2af7f565ba64254979177c5a85f0122 schema:name readcube_id
42 schema:value aec2c4ba9eab9722b97652aa3f2537e688f44ee41c9327aa758d77ef51896b70
43 rdf:type schema:PropertyValue
44 Nf67649bc12c34d9b9eb42637597691bc schema:name dimensions_id
45 schema:value pub.1036686461
46 rdf:type schema:PropertyValue
47 Nfbc0b818521941beade06f493ea6cdf1 schema:location Basel
48 schema:name Birkhäuser Basel
49 rdf:type schema:Organisation
50 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
51 schema:name Medical and Health Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
54 schema:name Neurosciences
55 rdf:type schema:DefinedTerm
56 sg:person.012621721115.68 schema:familyName Ambrosio
57 schema:givenName Luigi
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
59 rdf:type schema:Person
60 sg:person.015012242515.20 schema:familyName Gigli
61 schema:givenName Nicola
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
63 rdf:type schema:Person
64 sg:person.015505046621.07 schema:familyName Savaré
65 schema:givenName Giuseppe
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
67 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...