Gradient Flows and Curves of Maximal Slope in p(X) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

In this chapter we state some of the main results of the paper, concerning existence, uniqueness, approximation, and qualitative properties of gradient flows μ t generated by a proper, l.s.c. functional φ in p , X being a separable Hilbert space. Taking into account the first part of this book and the (sub)differential theory developed in the previous chapter, there are at least four possible approaches to gradient flows which can be adapted to the framework of Wasserstein spaces: More... »

PAGES

279-306

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_13

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036968361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In this chapter we state some of the main results of the paper, concerning existence, uniqueness, approximation, and qualitative properties of gradient flows \u03bc t generated by a proper, l.s.c. functional \u03c6 in p , X being a separable Hilbert space. Taking into account the first part of this book and the (sub)differential theory developed in the previous chapter, there are at least four possible approaches to gradient flows which can be adapted to the framework of Wasserstein spaces:", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Gradient Flows and Curves of Maximal Slope in p(X)", 
    "pagination": "279-306", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b01a7874f50e2e941f9c0c5b1c06692af3fe081f28a2c40eeb05a86a1cd43327"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036968361"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_13", 
      "https://app.dimensions.ai/details/publication/pub.1036968361"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000063.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_13'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_13 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc5cfb2a581474bae9e84dda818662604
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description In this chapter we state some of the main results of the paper, concerning existence, uniqueness, approximation, and qualitative properties of gradient flows μ t generated by a proper, l.s.c. functional φ in p , X being a separable Hilbert space. Taking into account the first part of this book and the (sub)differential theory developed in the previous chapter, there are at least four possible approaches to gradient flows which can be adapted to the framework of Wasserstein spaces:
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Ndb466356966a4448a28354da513eb5dc
11 schema:name Gradient Flows and Curves of Maximal Slope in p(X)
12 schema:pagination 279-306
13 schema:productId N01f0db47c5444f1fabc863fd3a35c977
14 Nacf19a8f8b734963893cfd85ab09af14
15 Nce7e705985044a108b2818143c3eb868
16 schema:publisher N526fcb765dd74535926bc3e9e1919aec
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036968361
18 https://doi.org/10.1007/978-3-7643-8722-8_13
19 schema:sdDatePublished 2019-04-15T18:57
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher Nfd4c3af23b9d4f7689d594aa143b91be
22 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_13
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N01f0db47c5444f1fabc863fd3a35c977 schema:name readcube_id
27 schema:value b01a7874f50e2e941f9c0c5b1c06692af3fe081f28a2c40eeb05a86a1cd43327
28 rdf:type schema:PropertyValue
29 N526fcb765dd74535926bc3e9e1919aec schema:location Basel
30 schema:name Birkhäuser Basel
31 rdf:type schema:Organisation
32 Nacf19a8f8b734963893cfd85ab09af14 schema:name doi
33 schema:value 10.1007/978-3-7643-8722-8_13
34 rdf:type schema:PropertyValue
35 Nc5cfb2a581474bae9e84dda818662604 rdf:first sg:person.012621721115.68
36 rdf:rest Nf468d1fafaf841bba76d49e7f6f8f358
37 Nc70529c1306c45abb9c32947de32bdf9 rdf:first sg:person.015505046621.07
38 rdf:rest rdf:nil
39 Nce7e705985044a108b2818143c3eb868 schema:name dimensions_id
40 schema:value pub.1036968361
41 rdf:type schema:PropertyValue
42 Ndb466356966a4448a28354da513eb5dc schema:isbn 978-3-7643-8721-1
43 978-3-7643-8722-8
44 schema:name Gradient Flows
45 rdf:type schema:Book
46 Nf468d1fafaf841bba76d49e7f6f8f358 rdf:first sg:person.015012242515.20
47 rdf:rest Nc70529c1306c45abb9c32947de32bdf9
48 Nfd4c3af23b9d4f7689d594aa143b91be schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:person.012621721115.68 schema:familyName Ambrosio
57 schema:givenName Luigi
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
59 rdf:type schema:Person
60 sg:person.015012242515.20 schema:familyName Gigli
61 schema:givenName Nicola
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
63 rdf:type schema:Person
64 sg:person.015505046621.07 schema:familyName Savaré
65 schema:givenName Giuseppe
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
67 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...