Metric Slope and Subdifferential Calculus in (X) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

As we have seen in Section 1.4, in the classical theory of subdifferential calculus for proper, lower semicontinuous functionals φ : X → (−∞,+∞] defined in a Hilbert space X, the Fréchet Subdifferential ∂φ : X → 2 X of φ is a multivalued operator defined as

PAGES

227-278

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_12

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051721910


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "As we have seen in Section 1.4, in the classical theory of subdifferential calculus for proper, lower semicontinuous functionals \u03c6 : X \u2192 (\u2212\u221e,+\u221e] defined in a Hilbert space X, the Fr\u00e9chet Subdifferential \u2202\u03c6 : X \u2192 2 X of \u03c6 is a multivalued operator defined as", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Metric Slope and Subdifferential Calculus in (X)", 
    "pagination": "227-278", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f6605d33f5077dbd07562b2b300c8ce0e9852dcf27a0392923d1b5ee230564bb"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051721910"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_12", 
      "https://app.dimensions.ai/details/publication/pub.1051721910"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000089.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_12'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      20 PREDICATES      24 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_12 schema:author Nda0e1ec7ad21467bbe691bb64704b2e2
2 schema:datePublished 2008
3 schema:datePublishedReg 2008-01-01
4 schema:description As we have seen in Section 1.4, in the classical theory of subdifferential calculus for proper, lower semicontinuous functionals φ : X → (−∞,+∞] defined in a Hilbert space X, the Fréchet Subdifferential ∂φ : X → 2 X of φ is a multivalued operator defined as
5 schema:genre chapter
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf N63944798af254a60bbf7396352e4e9f1
9 schema:name Metric Slope and Subdifferential Calculus in (X)
10 schema:pagination 227-278
11 schema:productId N19d9485db2f4403cb73fed4e9000262f
12 N64c3be675b90412184b5b0acd67b04a7
13 Nabd5849c2da9478298e918cc6d7a8650
14 schema:publisher N2f6e7c5322034ef392db73ca47b984c0
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051721910
16 https://doi.org/10.1007/978-3-7643-8722-8_12
17 schema:sdDatePublished 2019-04-15T23:42
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher Ncdb5ecd0d42f4054a43dd2c38cd599eb
20 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_12
21 sgo:license sg:explorer/license/
22 sgo:sdDataset chapters
23 rdf:type schema:Chapter
24 N19d9485db2f4403cb73fed4e9000262f schema:name dimensions_id
25 schema:value pub.1051721910
26 rdf:type schema:PropertyValue
27 N2f6e7c5322034ef392db73ca47b984c0 schema:location Basel
28 schema:name Birkhäuser Basel
29 rdf:type schema:Organisation
30 N63944798af254a60bbf7396352e4e9f1 schema:isbn 978-3-7643-8721-1
31 978-3-7643-8722-8
32 schema:name Gradient Flows
33 rdf:type schema:Book
34 N64c3be675b90412184b5b0acd67b04a7 schema:name doi
35 schema:value 10.1007/978-3-7643-8722-8_12
36 rdf:type schema:PropertyValue
37 Nabd5849c2da9478298e918cc6d7a8650 schema:name readcube_id
38 schema:value f6605d33f5077dbd07562b2b300c8ce0e9852dcf27a0392923d1b5ee230564bb
39 rdf:type schema:PropertyValue
40 Nbf397a8e1bdf4f21b33ade605d530089 rdf:first sg:person.015505046621.07
41 rdf:rest rdf:nil
42 Ncdb5ecd0d42f4054a43dd2c38cd599eb schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Nda0e1ec7ad21467bbe691bb64704b2e2 rdf:first sg:person.012621721115.68
45 rdf:rest Nfb581970cc824e4eb30903824a7c495f
46 Nfb581970cc824e4eb30903824a7c495f rdf:first sg:person.015012242515.20
47 rdf:rest Nbf397a8e1bdf4f21b33ade605d530089
48 sg:person.012621721115.68 schema:familyName Ambrosio
49 schema:givenName Luigi
50 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
51 rdf:type schema:Person
52 sg:person.015012242515.20 schema:familyName Gigli
53 schema:givenName Nicola
54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
55 rdf:type schema:Person
56 sg:person.015505046621.07 schema:familyName Savaré
57 schema:givenName Giuseppe
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
59 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...