Convex Functionals in p(X) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

The importance of geodesically convex functionals in Wasserstein spaces was firstly pointed out by McCann [111], who introduced the three basic examples we will discuss in detail in 9.3.1, 9.3.4, 9.3.6. His original motivation was to prove the uniqueness of the minimizer of an energy functional which results from the sum of the above three contributions. More... »

PAGES

201-225

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_11

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011058163


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The importance of geodesically convex functionals in Wasserstein spaces was firstly pointed out by McCann [111], who introduced the three basic examples we will discuss in detail in 9.3.1, 9.3.4, 9.3.6. His original motivation was to prove the uniqueness of the minimizer of an energy functional which results from the sum of the above three contributions.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Convex Functionals in p(X)", 
    "pagination": "201-225", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "34af6ea39e6ce01d57bdeecc4060ef1f64b42bdbdeb10da7a23c3012585a83b5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011058163"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_11", 
      "https://app.dimensions.ai/details/publication/pub.1011058163"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000019.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_11'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_11 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndf86d01277484c049ca18afe1d27f484
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description The importance of geodesically convex functionals in Wasserstein spaces was firstly pointed out by McCann [111], who introduced the three basic examples we will discuss in detail in 9.3.1, 9.3.4, 9.3.6. His original motivation was to prove the uniqueness of the minimizer of an energy functional which results from the sum of the above three contributions.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N854a10317262448fa634f0e9c58209ce
11 schema:name Convex Functionals in p(X)
12 schema:pagination 201-225
13 schema:productId N236a438d6e0c41c599855981cb4d19b2
14 N481a31b586e34fcdab89700389d19b3b
15 N7a56098636854df5a7ab8d414e458b11
16 schema:publisher N4480e2236b6243238221489b3f8b7331
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011058163
18 https://doi.org/10.1007/978-3-7643-8722-8_11
19 schema:sdDatePublished 2019-04-15T15:06
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N070a639d636b401e9714efc24c852804
22 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_11
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N070a639d636b401e9714efc24c852804 schema:name Springer Nature - SN SciGraph project
27 rdf:type schema:Organization
28 N236a438d6e0c41c599855981cb4d19b2 schema:name doi
29 schema:value 10.1007/978-3-7643-8722-8_11
30 rdf:type schema:PropertyValue
31 N4480e2236b6243238221489b3f8b7331 schema:location Basel
32 schema:name Birkhäuser Basel
33 rdf:type schema:Organisation
34 N481a31b586e34fcdab89700389d19b3b schema:name readcube_id
35 schema:value 34af6ea39e6ce01d57bdeecc4060ef1f64b42bdbdeb10da7a23c3012585a83b5
36 rdf:type schema:PropertyValue
37 N65c8251c8b0a442b9fd0195f660e1dcc rdf:first sg:person.015505046621.07
38 rdf:rest rdf:nil
39 N7a56098636854df5a7ab8d414e458b11 schema:name dimensions_id
40 schema:value pub.1011058163
41 rdf:type schema:PropertyValue
42 N854a10317262448fa634f0e9c58209ce schema:isbn 978-3-7643-8721-1
43 978-3-7643-8722-8
44 schema:name Gradient Flows
45 rdf:type schema:Book
46 Nc8935b28657b432fad739adef1794fe6 rdf:first sg:person.015012242515.20
47 rdf:rest N65c8251c8b0a442b9fd0195f660e1dcc
48 Ndf86d01277484c049ca18afe1d27f484 rdf:first sg:person.012621721115.68
49 rdf:rest Nc8935b28657b432fad739adef1794fe6
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:person.012621721115.68 schema:familyName Ambrosio
57 schema:givenName Luigi
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
59 rdf:type schema:Person
60 sg:person.015012242515.20 schema:familyName Gigli
61 schema:givenName Nicola
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
63 rdf:type schema:Person
64 sg:person.015505046621.07 schema:familyName Savaré
65 schema:givenName Giuseppe
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
67 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...