Introduction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Luigi Ambrosio , Nicola Gigli , Giuseppe Savaré

ABSTRACT

This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It is made of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the L 2-Wasserstein space of probability measures on a separable Hilbert space X endowed with the Wasserstein L 2 metric (we consider the L p -Wasserstein distance, p ∈ (1, ∞), as well). More... »

PAGES

1-17

Book

TITLE

Gradient Flows

ISBN

978-3-7643-8721-1
978-3-7643-8722-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_1

DOI

http://dx.doi.org/10.1007/978-3-7643-8722-8_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027799267


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Savar\u00e9", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015505046621.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It is made of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the L 2-Wasserstein space of probability measures on a separable Hilbert space X endowed with the Wasserstein L 2 metric (we consider the L p -Wasserstein distance, p \u2208 (1, \u221e), as well).", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8722-8_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8721-1", 
        "978-3-7643-8722-8"
      ], 
      "name": "Gradient Flows", 
      "type": "Book"
    }, 
    "name": "Introduction", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8722-8_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "846dac6c389cb8d9a6e9ccfa5f6e17a5159c8a37a1ec5ad213a5b1e881d5e25a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027799267"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8722-8_1", 
      "https://app.dimensions.ai/details/publication/pub.1027799267"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000047.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-7643-8722-8_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8722-8_1'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8722-8_1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3319ea8ca1eb428d87bca524fc4853cd
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It is made of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the L 2-Wasserstein space of probability measures on a separable Hilbert space X endowed with the Wasserstein L 2 metric (we consider the L p -Wasserstein distance, p ∈ (1, ∞), as well).
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N10586d38e556486295b032a38db7958e
11 schema:name Introduction
12 schema:pagination 1-17
13 schema:productId N17a5b01e161f457da4650679ba3fb25c
14 N6c513367cd634b9d89e2b3bf0ecfb038
15 Naa90379d7c0147629241f2c74ec66a59
16 schema:publisher Nf2960496378348c5b30fe27e5f9de243
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027799267
18 https://doi.org/10.1007/978-3-7643-8722-8_1
19 schema:sdDatePublished 2019-04-16T00:35
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N7b450e45b232469ab41a3f01f4fa5217
22 schema:url http://link.springer.com/10.1007/978-3-7643-8722-8_1
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N10586d38e556486295b032a38db7958e schema:isbn 978-3-7643-8721-1
27 978-3-7643-8722-8
28 schema:name Gradient Flows
29 rdf:type schema:Book
30 N17a5b01e161f457da4650679ba3fb25c schema:name doi
31 schema:value 10.1007/978-3-7643-8722-8_1
32 rdf:type schema:PropertyValue
33 N3319ea8ca1eb428d87bca524fc4853cd rdf:first sg:person.012621721115.68
34 rdf:rest Nb456b288d6bc4778a1fda51717d23fbe
35 N6c513367cd634b9d89e2b3bf0ecfb038 schema:name readcube_id
36 schema:value 846dac6c389cb8d9a6e9ccfa5f6e17a5159c8a37a1ec5ad213a5b1e881d5e25a
37 rdf:type schema:PropertyValue
38 N7b450e45b232469ab41a3f01f4fa5217 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Naa90379d7c0147629241f2c74ec66a59 schema:name dimensions_id
41 schema:value pub.1027799267
42 rdf:type schema:PropertyValue
43 Nb456b288d6bc4778a1fda51717d23fbe rdf:first sg:person.015012242515.20
44 rdf:rest Nb7f6bf52875845eaadc85530c965cc25
45 Nb7f6bf52875845eaadc85530c965cc25 rdf:first sg:person.015505046621.07
46 rdf:rest rdf:nil
47 Nf2960496378348c5b30fe27e5f9de243 schema:location Basel
48 schema:name Birkhäuser Basel
49 rdf:type schema:Organisation
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:person.012621721115.68 schema:familyName Ambrosio
57 schema:givenName Luigi
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
59 rdf:type schema:Person
60 sg:person.015012242515.20 schema:familyName Gigli
61 schema:givenName Nicola
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
63 rdf:type schema:Person
64 sg:person.015505046621.07 schema:familyName Savaré
65 schema:givenName Giuseppe
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07
67 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...