The Higher Order Carathéodory—Julia Theorem and Related Boundary Interpolation Problems View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Vladimir Bolotnikov , Alexander Kheifets

ABSTRACT

The higher order analogue of the classical Carathéodory-Julia theorem on boundary angular derivatives has been obtained in [7]. Here we study boundary interpolation problems for Schur class functions (analytic and bounded by one in the open unit disk) motivated by that result.

PAGES

63-102

Book

TITLE

Recent Advances in Matrix and Operator Theory

ISBN

978-3-7643-8538-5
978-3-7643-8539-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7643-8539-2_5

DOI

http://dx.doi.org/10.1007/978-3-7643-8539-2_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003857959


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Lowell", 
          "id": "https://www.grid.ac/institutes/grid.225262.3", 
          "name": [
            "Department of Mathematics, University of Massachusetts Lowell, 01854, Lowell, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kheifets", 
        "givenName": "Alexander", 
        "id": "sg:person.013174220357.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174220357.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jfa.2006.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000646471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02404416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001883413", 
          "https://doi.org/10.1007/bf02404416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02404416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001883413", 
          "https://doi.org/10.1007/bf02404416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005189177", 
          "https://doi.org/10.1007/bf01195006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005189177", 
          "https://doi.org/10.1007/bf01195006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8532-4_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018173209", 
          "https://doi.org/10.1007/978-3-0348-8532-4_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8532-4_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018173209", 
          "https://doi.org/10.1007/978-3-0348-8532-4_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19921570110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029596774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043632982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-70151-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051265805", 
          "https://doi.org/10.1007/978-3-642-70151-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-70151-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051265805", 
          "https://doi.org/10.1007/978-3-642-70151-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567826"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The higher order analogue of the classical Carath\u00e9odory-Julia theorem on boundary angular derivatives has been obtained in [7]. Here we study boundary interpolation problems for Schur class functions (analytic and bounded by one in the open unit disk) motivated by that result.", 
    "editor": [
      {
        "familyName": "Ball", 
        "givenName": "Joseph A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Eidelman", 
        "givenName": "Yuli", 
        "type": "Person"
      }, 
      {
        "familyName": "Helton", 
        "givenName": "J. William", 
        "type": "Person"
      }, 
      {
        "familyName": "Olshevsky", 
        "givenName": "Vadim", 
        "type": "Person"
      }, 
      {
        "familyName": "Rovnyak", 
        "givenName": "James", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7643-8539-2_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-7643-8538-5", 
        "978-3-7643-8539-2"
      ], 
      "name": "Recent Advances in Matrix and Operator Theory", 
      "type": "Book"
    }, 
    "name": "The Higher Order Carath\u00e9odory\u2014Julia Theorem and Related Boundary Interpolation Problems", 
    "pagination": "63-102", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7643-8539-2_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "126169cdf1356f278a547a5d7e75bb12bf9a8c767d2cf733277cc8178f371971"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003857959"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7643-8539-2_5", 
      "https://app.dimensions.ai/details/publication/pub.1003857959"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54310_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-7643-8539-2_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8539-2_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8539-2_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8539-2_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7643-8539-2_5'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7643-8539-2_5 schema:author N016b328a4d4b4e9f9dbbc98b9c77887c
2 schema:citation sg:pub.10.1007/978-3-0348-7709-1
3 sg:pub.10.1007/978-3-0348-8532-4_6
4 sg:pub.10.1007/978-3-642-70151-1
5 sg:pub.10.1007/bf01195006
6 sg:pub.10.1007/bf01238220
7 sg:pub.10.1007/bf01691925
8 sg:pub.10.1007/bf02404416
9 https://app.dimensions.ai/details/publication/pub.1043632982
10 https://doi.org/10.1002/mana.19921570110
11 https://doi.org/10.1016/j.jfa.2006.03.016
12 https://doi.org/10.1090/memo/0856
13 https://doi.org/10.1090/mmono/050
14 schema:datePublished 2008
15 schema:datePublishedReg 2008-01-01
16 schema:description The higher order analogue of the classical Carathéodory-Julia theorem on boundary angular derivatives has been obtained in [7]. Here we study boundary interpolation problems for Schur class functions (analytic and bounded by one in the open unit disk) motivated by that result.
17 schema:editor Ne46e858a96b44426b27430df3498a12c
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N080f76b30e8d4e6db2768f12cedaca2a
22 schema:name The Higher Order Carathéodory—Julia Theorem and Related Boundary Interpolation Problems
23 schema:pagination 63-102
24 schema:productId N426da0148a9f444aa8f46004a78d79ca
25 N62d53161ebc74c008c99bf065eb46ce6
26 Nc669daa69f4045bda84d4cc629e24314
27 schema:publisher N710521814ba840d7acad5f3fa991ae8a
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003857959
29 https://doi.org/10.1007/978-3-7643-8539-2_5
30 schema:sdDatePublished 2019-04-16T05:53
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N03dc56263db9477b8802e2c7dd5873e4
33 schema:url https://link.springer.com/10.1007%2F978-3-7643-8539-2_5
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N016b328a4d4b4e9f9dbbc98b9c77887c rdf:first sg:person.01130533744.43
38 rdf:rest Ncd0137faa99f41fba83bcf85713b6e87
39 N03dc56263db9477b8802e2c7dd5873e4 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N080f76b30e8d4e6db2768f12cedaca2a schema:isbn 978-3-7643-8538-5
42 978-3-7643-8539-2
43 schema:name Recent Advances in Matrix and Operator Theory
44 rdf:type schema:Book
45 N2d76fbd07e5b4737b8a1a7bf1fbd28d7 rdf:first N994d52b5ad2f4b16bd47fbfffc6ae4aa
46 rdf:rest rdf:nil
47 N33c20190bf5d4a8082427a7d0baa3e21 schema:familyName Eidelman
48 schema:givenName Yuli
49 rdf:type schema:Person
50 N420793558fa545e4a664826601a6b0ef rdf:first N80523cd2f28b453e87e27818f6fbb8fd
51 rdf:rest N8019ee5dd99341329b35e56f9f05ef0f
52 N426da0148a9f444aa8f46004a78d79ca schema:name doi
53 schema:value 10.1007/978-3-7643-8539-2_5
54 rdf:type schema:PropertyValue
55 N49da8e5a834f43c983714c6ebc2aae19 schema:familyName Ball
56 schema:givenName Joseph A.
57 rdf:type schema:Person
58 N62d53161ebc74c008c99bf065eb46ce6 schema:name readcube_id
59 schema:value 126169cdf1356f278a547a5d7e75bb12bf9a8c767d2cf733277cc8178f371971
60 rdf:type schema:PropertyValue
61 N710521814ba840d7acad5f3fa991ae8a schema:location Basel
62 schema:name Birkhäuser Basel
63 rdf:type schema:Organisation
64 N71f33dd9f7284a44974492c2e8a799d6 schema:familyName Olshevsky
65 schema:givenName Vadim
66 rdf:type schema:Person
67 N8019ee5dd99341329b35e56f9f05ef0f rdf:first N71f33dd9f7284a44974492c2e8a799d6
68 rdf:rest N2d76fbd07e5b4737b8a1a7bf1fbd28d7
69 N80523cd2f28b453e87e27818f6fbb8fd schema:familyName Helton
70 schema:givenName J. William
71 rdf:type schema:Person
72 N994d52b5ad2f4b16bd47fbfffc6ae4aa schema:familyName Rovnyak
73 schema:givenName James
74 rdf:type schema:Person
75 Na9cb6ab915a842e3a0372835faf438dd rdf:first N33c20190bf5d4a8082427a7d0baa3e21
76 rdf:rest N420793558fa545e4a664826601a6b0ef
77 Nc669daa69f4045bda84d4cc629e24314 schema:name dimensions_id
78 schema:value pub.1003857959
79 rdf:type schema:PropertyValue
80 Ncd0137faa99f41fba83bcf85713b6e87 rdf:first sg:person.013174220357.75
81 rdf:rest rdf:nil
82 Ne46e858a96b44426b27430df3498a12c rdf:first N49da8e5a834f43c983714c6ebc2aae19
83 rdf:rest Na9cb6ab915a842e3a0372835faf438dd
84 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
85 schema:familyName Bolotnikov
86 schema:givenName Vladimir
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
88 rdf:type schema:Person
89 sg:person.013174220357.75 schema:affiliation https://www.grid.ac/institutes/grid.225262.3
90 schema:familyName Kheifets
91 schema:givenName Alexander
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174220357.75
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-0348-7709-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043632982
95 https://doi.org/10.1007/978-3-0348-7709-1
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-0348-8532-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018173209
98 https://doi.org/10.1007/978-3-0348-8532-4_6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-3-642-70151-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051265805
101 https://doi.org/10.1007/978-3-642-70151-1
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01195006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005189177
104 https://doi.org/10.1007/bf01195006
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01238220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033101609
107 https://doi.org/10.1007/bf01238220
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01691925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019968975
110 https://doi.org/10.1007/bf01691925
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02404416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001883413
113 https://doi.org/10.1007/bf02404416
114 rdf:type schema:CreativeWork
115 https://app.dimensions.ai/details/publication/pub.1043632982 schema:CreativeWork
116 https://doi.org/10.1002/mana.19921570110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029596774
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jfa.2006.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000646471
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1090/memo/0856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343905
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1090/mmono/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567826
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.225262.3 schema:alternateName University of Massachusetts Lowell
125 schema:name Department of Mathematics, University of Massachusetts Lowell, 01854, Lowell, MA, USA
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
128 schema:name Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...