The class of refractory neural nets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

A. Clementi , M. Di Ianni , P. Mentrasti

ABSTRACT

We introduce the absolute refractory behaviour into the formal neuron model. While a probabilistic approach to such a refractory model has yet been attempted, in this paper, a deterministic analysis is realized. A first result consists in showing a not expensive algorithm to transform each refractory net into an equivalent not refractory one. Such a result is then exploited to obtain an upper bound to the computational complexity of two classical problems: the reachability and stabilization problems. They find their principal motivations in control and learning theories whenever the necessity to a priori determine the lenght of both transients and limit cycles arises. Finally, we prove that, when the connection matrices of nets are symmetric, the complementary problem of stabilization is NP-complete and reachability is P-complete. More... »

PAGES

3-10

References to SciGraph publications

  • 1967-08. Reverberations and control of neural networks in KYBERNETIK
  • 1943-12. A logical calculus of the ideas immanent in nervous activity in BULLETIN OF MATHEMATICAL BIOLOGY
  • Book

    TITLE

    Artificial Neural Nets and Genetic Algorithms

    ISBN

    978-3-211-82459-7
    978-3-7091-7533-0

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-7091-7533-0_2

    DOI

    http://dx.doi.org/10.1007/978-3-7091-7533-0_2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016715387


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Dipartimento di Scienze dell\u2019Informazione, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, via Salaria 113, 00198\u00a0Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Clementi", 
            "givenName": "A.", 
            "id": "sg:person.011027660123.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011027660123.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Dipartimento di Scienze dell\u2019Informazione, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, via Salaria 113, 00198\u00a0Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Di Ianni", 
            "givenName": "M.", 
            "id": "sg:person.016640237557.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016640237557.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, P.le Aldo Moro 2, 00185\u00a0Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mentrasti", 
            "givenName": "P.", 
            "id": "sg:person.012463615237.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012463615237.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0025-5564(74)90031-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011858091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-218x(83)90105-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012341975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00288821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012749788", 
              "https://doi.org/10.1007/bf00288821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00288821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012749788", 
              "https://doi.org/10.1007/bf00288821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02478259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028715170", 
              "https://doi.org/10.1007/bf02478259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1008354.1008356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034613659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-218x(85)90029-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035133648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0166-218x(85)90029-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035133648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(61)90046-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040640000"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993", 
        "datePublishedReg": "1993-01-01", 
        "description": "We introduce the absolute refractory behaviour into the formal neuron model. While a probabilistic approach to such a refractory model has yet been attempted, in this paper, a deterministic analysis is realized. A first result consists in showing a not expensive algorithm to transform each refractory net into an equivalent not refractory one. Such a result is then exploited to obtain an upper bound to the computational complexity of two classical problems: the reachability and stabilization problems. They find their principal motivations in control and learning theories whenever the necessity to a priori determine the lenght of both transients and limit cycles arises. Finally, we prove that, when the connection matrices of nets are symmetric, the complementary problem of stabilization is NP-complete and reachability is P-complete.", 
        "editor": [
          {
            "familyName": "Albrecht", 
            "givenName": "Rudolf F.", 
            "type": "Person"
          }, 
          {
            "familyName": "Reeves", 
            "givenName": "Colin R.", 
            "type": "Person"
          }, 
          {
            "familyName": "Steele", 
            "givenName": "Nigel C.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-7091-7533-0_2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-211-82459-7", 
            "978-3-7091-7533-0"
          ], 
          "name": "Artificial Neural Nets and Genetic Algorithms", 
          "type": "Book"
        }, 
        "name": "The class of refractory neural nets", 
        "pagination": "3-10", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-7091-7533-0_2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4fa44a40e3331f0efc11db49bbd197e7f8f1a70a6fb8c572a570f70d10643728"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016715387"
            ]
          }
        ], 
        "publisher": {
          "location": "Vienna", 
          "name": "Springer Vienna", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-7091-7533-0_2", 
          "https://app.dimensions.ai/details/publication/pub.1016715387"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T12:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000253.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-7091-7533-0_2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-7533-0_2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-7533-0_2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-7533-0_2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-7533-0_2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-7091-7533-0_2 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N0da0681dc42741b6815a97475d57e046
    4 schema:citation sg:pub.10.1007/bf00288821
    5 sg:pub.10.1007/bf02478259
    6 https://doi.org/10.1016/0022-5193(61)90046-7
    7 https://doi.org/10.1016/0025-5564(74)90031-5
    8 https://doi.org/10.1016/0166-218x(83)90105-1
    9 https://doi.org/10.1016/0166-218x(85)90029-0
    10 https://doi.org/10.1145/1008354.1008356
    11 schema:datePublished 1993
    12 schema:datePublishedReg 1993-01-01
    13 schema:description We introduce the absolute refractory behaviour into the formal neuron model. While a probabilistic approach to such a refractory model has yet been attempted, in this paper, a deterministic analysis is realized. A first result consists in showing a not expensive algorithm to transform each refractory net into an equivalent not refractory one. Such a result is then exploited to obtain an upper bound to the computational complexity of two classical problems: the reachability and stabilization problems. They find their principal motivations in control and learning theories whenever the necessity to a priori determine the lenght of both transients and limit cycles arises. Finally, we prove that, when the connection matrices of nets are symmetric, the complementary problem of stabilization is NP-complete and reachability is P-complete.
    14 schema:editor N195c2f456a18450b83b1bee204eba34d
    15 schema:genre chapter
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N6ff33677b4d04e7684b6cfeec2c26686
    19 schema:name The class of refractory neural nets
    20 schema:pagination 3-10
    21 schema:productId N1ff934b38ebe40f494a3cb447d8426f4
    22 N72fa9ab264f9482cba510111a806c730
    23 N887bccfb653242599b3c5b094b2f57af
    24 schema:publisher N65f67314560b45f0adb03879a7f553a3
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016715387
    26 https://doi.org/10.1007/978-3-7091-7533-0_2
    27 schema:sdDatePublished 2019-04-15T12:31
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N2aa47548f8eb41fba6e8b768b730503c
    30 schema:url http://link.springer.com/10.1007/978-3-7091-7533-0_2
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset chapters
    33 rdf:type schema:Chapter
    34 N0da0681dc42741b6815a97475d57e046 rdf:first sg:person.011027660123.21
    35 rdf:rest Nb0f4433d7d38424784b461a366f2396e
    36 N195c2f456a18450b83b1bee204eba34d rdf:first Nc9fa5172fc9c4234a1cbf00c72bab4f1
    37 rdf:rest N34b964233c034509836c3588a992c002
    38 N1ff934b38ebe40f494a3cb447d8426f4 schema:name readcube_id
    39 schema:value 4fa44a40e3331f0efc11db49bbd197e7f8f1a70a6fb8c572a570f70d10643728
    40 rdf:type schema:PropertyValue
    41 N269b2626e2834e7698a3d99111161e07 schema:familyName Steele
    42 schema:givenName Nigel C.
    43 rdf:type schema:Person
    44 N2777625b7b0c4c78813a3ec2d0bb2e74 rdf:first sg:person.012463615237.51
    45 rdf:rest rdf:nil
    46 N2aa47548f8eb41fba6e8b768b730503c schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N34b964233c034509836c3588a992c002 rdf:first N88cfb3dd2a41422aa4f9a063ffe9a525
    49 rdf:rest N539d22a51a6f4e52a10da84006b2aa3d
    50 N539d22a51a6f4e52a10da84006b2aa3d rdf:first N269b2626e2834e7698a3d99111161e07
    51 rdf:rest rdf:nil
    52 N65f67314560b45f0adb03879a7f553a3 schema:location Vienna
    53 schema:name Springer Vienna
    54 rdf:type schema:Organisation
    55 N6ff33677b4d04e7684b6cfeec2c26686 schema:isbn 978-3-211-82459-7
    56 978-3-7091-7533-0
    57 schema:name Artificial Neural Nets and Genetic Algorithms
    58 rdf:type schema:Book
    59 N72fa9ab264f9482cba510111a806c730 schema:name doi
    60 schema:value 10.1007/978-3-7091-7533-0_2
    61 rdf:type schema:PropertyValue
    62 N887bccfb653242599b3c5b094b2f57af schema:name dimensions_id
    63 schema:value pub.1016715387
    64 rdf:type schema:PropertyValue
    65 N88cfb3dd2a41422aa4f9a063ffe9a525 schema:familyName Reeves
    66 schema:givenName Colin R.
    67 rdf:type schema:Person
    68 Nb0f4433d7d38424784b461a366f2396e rdf:first sg:person.016640237557.01
    69 rdf:rest N2777625b7b0c4c78813a3ec2d0bb2e74
    70 Nc9fa5172fc9c4234a1cbf00c72bab4f1 schema:familyName Albrecht
    71 schema:givenName Rudolf F.
    72 rdf:type schema:Person
    73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Information and Computing Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Computation Theory and Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:person.011027660123.21 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    80 schema:familyName Clementi
    81 schema:givenName A.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011027660123.21
    83 rdf:type schema:Person
    84 sg:person.012463615237.51 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    85 schema:familyName Mentrasti
    86 schema:givenName P.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012463615237.51
    88 rdf:type schema:Person
    89 sg:person.016640237557.01 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    90 schema:familyName Di Ianni
    91 schema:givenName M.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016640237557.01
    93 rdf:type schema:Person
    94 sg:pub.10.1007/bf00288821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012749788
    95 https://doi.org/10.1007/bf00288821
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
    98 https://doi.org/10.1007/bf02478259
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/0022-5193(61)90046-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040640000
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0025-5564(74)90031-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011858091
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/0166-218x(83)90105-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012341975
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/0166-218x(85)90029-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035133648
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1145/1008354.1008356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034613659
    109 rdf:type schema:CreativeWork
    110 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
    111 schema:name Dipartimento di Matematica, Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185 Roma, Italy
    112 Dipartimento di Scienze dell’Informazione, Università di Roma “La Sapienza”, via Salaria 113, 00198 Roma, Italy
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...