Ratio Scales are Critical for Modeling Neural Synthesis in the Brain View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Thomas L. Saaty

ABSTRACT

The brain generally miniaturizes its perceptions into what may be regarded as a model of what happens outside. We experience the world according to the capacity of our nervous system to register the stimuli we receive. In order to understand and control the environment there needs to be proportionality between the measurements represented in the miniaturized model that arise from the firings of our neurons, and the actual measurements in the real world. Thus our response to stimuli must satisfy the fundamental functional equation F(ax) = bF(x). In other words, our interpretation of a stimulus as registered by the firing of our neurons is proportional to what it would be if it were not filtered through the brain. This equation is the homogeneous part of the inhomogeneous equation F(ax) − bF(x) = G(x) with the forcing function G(x). What interests us here is the mode of operation of the (firing) system that needs to always satisfy the homogeneous part. More... »

PAGES

7-15

Book

TITLE

Artificial Neural Nets and Genetic Algorithms

ISBN

978-3-211-83651-4
978-3-7091-6230-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7091-6230-9_2

DOI

http://dx.doi.org/10.1007/978-3-7091-6230-9_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009650961


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pittsburgh, 15260, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "University of Pittsburgh, 15260, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saaty", 
        "givenName": "Thomas L.", 
        "id": "sg:person.010070352303.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070352303.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "The brain generally miniaturizes its perceptions into what may be regarded as a model of what happens outside. We experience the world according to the capacity of our nervous system to register the stimuli we receive. In order to understand and control the environment there needs to be proportionality between the measurements represented in the miniaturized model that arise from the firings of our neurons, and the actual measurements in the real world. Thus our response to stimuli must satisfy the fundamental functional equation F(ax) = bF(x). In other words, our interpretation of a stimulus as registered by the firing of our neurons is proportional to what it would be if it were not filtered through the brain. This equation is the homogeneous part of the inhomogeneous equation F(ax) \u2212 bF(x) = G(x) with the forcing function G(x). What interests us here is the mode of operation of the (firing) system that needs to always satisfy the homogeneous part.", 
    "editor": [
      {
        "familyName": "K\u016frkov\u00e1", 
        "givenName": "V\u011bra", 
        "type": "Person"
      }, 
      {
        "familyName": "Neruda", 
        "givenName": "Roman", 
        "type": "Person"
      }, 
      {
        "familyName": "K\u00e1rn\u00fd", 
        "givenName": "Miroslav", 
        "type": "Person"
      }, 
      {
        "familyName": "Steele", 
        "givenName": "Nigel C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7091-6230-9_2", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-211-83651-4", 
        "978-3-7091-6230-9"
      ], 
      "name": "Artificial Neural Nets and Genetic Algorithms", 
      "type": "Book"
    }, 
    "keywords": [
      "nervous system", 
      "brain", 
      "neurons", 
      "stimuli", 
      "firing", 
      "neural synthesis", 
      "response", 
      "function", 
      "part", 
      "perception", 
      "scale", 
      "measurements", 
      "model", 
      "capacity", 
      "ratio scale", 
      "system", 
      "world", 
      "synthesis", 
      "operation", 
      "interpretation", 
      "order", 
      "real world", 
      "actual measurements", 
      "proportionality", 
      "mode", 
      "environment", 
      "words", 
      "miniaturized model", 
      "mode of operation", 
      "equations", 
      "functional equation", 
      "homogeneous part", 
      "inhomogeneous equation"
    ], 
    "name": "Ratio Scales are Critical for Modeling Neural Synthesis in the Brain", 
    "pagination": "7-15", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009650961"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7091-6230-9_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7091-6230-9_2", 
      "https://app.dimensions.ai/details/publication/pub.1009650961"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_250.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-7091-6230-9_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-6230-9_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-6230-9_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-6230-9_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-6230-9_2'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      22 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7091-6230-9_2 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N1c03d1f5f0c34192997d9404819f5d45
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description The brain generally miniaturizes its perceptions into what may be regarded as a model of what happens outside. We experience the world according to the capacity of our nervous system to register the stimuli we receive. In order to understand and control the environment there needs to be proportionality between the measurements represented in the miniaturized model that arise from the firings of our neurons, and the actual measurements in the real world. Thus our response to stimuli must satisfy the fundamental functional equation F(ax) = bF(x). In other words, our interpretation of a stimulus as registered by the firing of our neurons is proportional to what it would be if it were not filtered through the brain. This equation is the homogeneous part of the inhomogeneous equation F(ax) − bF(x) = G(x) with the forcing function G(x). What interests us here is the mode of operation of the (firing) system that needs to always satisfy the homogeneous part.
7 schema:editor N9eceab08ba6943c28c19759d7c7cd753
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nfbb5f64ca7f94cd098d83fb3e1da4692
11 schema:keywords actual measurements
12 brain
13 capacity
14 environment
15 equations
16 firing
17 function
18 functional equation
19 homogeneous part
20 inhomogeneous equation
21 interpretation
22 measurements
23 miniaturized model
24 mode
25 mode of operation
26 model
27 nervous system
28 neural synthesis
29 neurons
30 operation
31 order
32 part
33 perception
34 proportionality
35 ratio scale
36 real world
37 response
38 scale
39 stimuli
40 synthesis
41 system
42 words
43 world
44 schema:name Ratio Scales are Critical for Modeling Neural Synthesis in the Brain
45 schema:pagination 7-15
46 schema:productId N01bebdcb00fb4c36bcc8638c1c1e2ded
47 N02a2ebbea76b4565bc358d6ddc6c20fb
48 schema:publisher Ne954677ffb224affac5bedaf5448628b
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009650961
50 https://doi.org/10.1007/978-3-7091-6230-9_2
51 schema:sdDatePublished 2022-12-01T06:49
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N59ec16219d0f4046b76067d94db2b079
54 schema:url https://doi.org/10.1007/978-3-7091-6230-9_2
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N01bebdcb00fb4c36bcc8638c1c1e2ded schema:name doi
59 schema:value 10.1007/978-3-7091-6230-9_2
60 rdf:type schema:PropertyValue
61 N02a2ebbea76b4565bc358d6ddc6c20fb schema:name dimensions_id
62 schema:value pub.1009650961
63 rdf:type schema:PropertyValue
64 N1c03d1f5f0c34192997d9404819f5d45 rdf:first sg:person.010070352303.49
65 rdf:rest rdf:nil
66 N40b70d8121774f1196e009f4feb63354 schema:familyName Neruda
67 schema:givenName Roman
68 rdf:type schema:Person
69 N59ec16219d0f4046b76067d94db2b079 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N5f7aee7c0ca143f19def709ae762d252 rdf:first Neb12aa82ebf84d21803291193e47a8c6
72 rdf:rest rdf:nil
73 N7abf3ad67bc54f4da78838974d39003a schema:familyName Kůrková
74 schema:givenName Věra
75 rdf:type schema:Person
76 N9eceab08ba6943c28c19759d7c7cd753 rdf:first N7abf3ad67bc54f4da78838974d39003a
77 rdf:rest Nf698246f4e1b4455bf92dbac478741e1
78 Na6a3d60a16d245969fbee70cfb66738e schema:familyName Kárný
79 schema:givenName Miroslav
80 rdf:type schema:Person
81 Nd13ee24ccb744f538f69d14b0e29c4cd rdf:first Na6a3d60a16d245969fbee70cfb66738e
82 rdf:rest N5f7aee7c0ca143f19def709ae762d252
83 Ne954677ffb224affac5bedaf5448628b schema:name Springer Nature
84 rdf:type schema:Organisation
85 Neb12aa82ebf84d21803291193e47a8c6 schema:familyName Steele
86 schema:givenName Nigel C.
87 rdf:type schema:Person
88 Nf698246f4e1b4455bf92dbac478741e1 rdf:first N40b70d8121774f1196e009f4feb63354
89 rdf:rest Nd13ee24ccb744f538f69d14b0e29c4cd
90 Nfbb5f64ca7f94cd098d83fb3e1da4692 schema:isbn 978-3-211-83651-4
91 978-3-7091-6230-9
92 schema:name Artificial Neural Nets and Genetic Algorithms
93 rdf:type schema:Book
94 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
95 schema:name Medical and Health Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
98 schema:name Neurosciences
99 rdf:type schema:DefinedTerm
100 sg:person.010070352303.49 schema:affiliation grid-institutes:grid.21925.3d
101 schema:familyName Saaty
102 schema:givenName Thomas L.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010070352303.49
104 rdf:type schema:Person
105 grid-institutes:grid.21925.3d schema:alternateName University of Pittsburgh, 15260, Pittsburgh, PA, USA
106 schema:name University of Pittsburgh, 15260, Pittsburgh, PA, USA
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...