Fractional Calculus View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

R. Gorenflo , F. Mainardi

ABSTRACT

In these lectures we introduce the linear operators of fractional integration and fractional differentiation in the framework of the Riemann-Liouville fractional calculus. Particular attention is devoted to the technique of Laplace transforms for treating these operators in a way accessible to applied scientists, avoiding unproductive generalities and excessive mathematical rigor. By applying this technique we shall derive the analy ical solutions of the most simple linear integral and differential equations of fractional order. We shall show the fundamental role of the Mittag-Leffler function, whose properties are reported in an ad hoc Appendix. The topics discussed here will be: (a) essentials of Riemann-Liouville fractional calculus with basic formulas of Laplace transforms, (b) Abel type integral equations of first and second kind, (c) relaxation and oscillation type differential equations of fractional order. More... »

PAGES

223-276

Book

TITLE

Fractals and Fractional Calculus in Continuum Mechanics

ISBN

978-3-211-82913-4
978-3-7091-2664-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7091-2664-6_5

DOI

http://dx.doi.org/10.1007/978-3-7091-2664-6_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038872226


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Free University of Berlin, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Free University of Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorenflo", 
        "givenName": "R.", 
        "id": "sg:person.015631105351.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631105351.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "University of Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mainardi", 
        "givenName": "F.", 
        "id": "sg:person.012466376015.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012466376015.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "In these lectures we introduce the linear operators of fractional integration and fractional differentiation in the framework of the Riemann-Liouville fractional calculus. Particular attention is devoted to the technique of Laplace transforms for treating these operators in a way accessible to applied scientists, avoiding unproductive generalities and excessive mathematical rigor. By applying this technique we shall derive the analy ical solutions of the most simple linear integral and differential equations of fractional order. We shall show the fundamental role of the Mittag-Leffler function, whose properties are reported in an ad hoc Appendix. The topics discussed here will be: (a) essentials of Riemann-Liouville fractional calculus with basic formulas of Laplace transforms, (b) Abel type integral equations of first and second kind, (c) relaxation and oscillation type differential equations of fractional order.", 
    "editor": [
      {
        "familyName": "Carpinteri", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mainardi", 
        "givenName": "F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7091-2664-6_5", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-211-82913-4", 
        "978-3-7091-2664-6"
      ], 
      "name": "Fractals and Fractional Calculus in Continuum Mechanics", 
      "type": "Book"
    }, 
    "keywords": [
      "Riemann-Liouville fractional calculus", 
      "fractional calculus", 
      "differential equations", 
      "fractional order", 
      "Abel-type integral equations", 
      "type differential equations", 
      "type integral equations", 
      "Mittag-Leffler function", 
      "technique of Laplace", 
      "linear operators", 
      "mathematical rigor", 
      "integral equations", 
      "fractional differentiation", 
      "second kind", 
      "Laplace transform", 
      "equations", 
      "fractional integration", 
      "basic formula", 
      "applied scientists", 
      "simple linear", 
      "calculus", 
      "operators", 
      "Laplace", 
      "linear", 
      "formula", 
      "generality", 
      "solution", 
      "fundamental role", 
      "particular attention", 
      "technique", 
      "order", 
      "relaxation", 
      "appendix", 
      "properties", 
      "framework", 
      "function", 
      "transform", 
      "kind", 
      "integration", 
      "way", 
      "topic", 
      "lectures", 
      "rigor", 
      "scientists", 
      "attention", 
      "essential", 
      "role", 
      "differentiation"
    ], 
    "name": "Fractional Calculus", 
    "pagination": "223-276", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038872226"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7091-2664-6_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7091-2664-6_5", 
      "https://app.dimensions.ai/details/publication/pub.1038872226"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_356.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-7091-2664-6_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-2664-6_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-2664-6_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-2664-6_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-2664-6_5'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      22 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7091-2664-6_5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N49fd09777b044da3a1380c9af5ad44ea
4 schema:datePublished 1997
5 schema:datePublishedReg 1997-01-01
6 schema:description In these lectures we introduce the linear operators of fractional integration and fractional differentiation in the framework of the Riemann-Liouville fractional calculus. Particular attention is devoted to the technique of Laplace transforms for treating these operators in a way accessible to applied scientists, avoiding unproductive generalities and excessive mathematical rigor. By applying this technique we shall derive the analy ical solutions of the most simple linear integral and differential equations of fractional order. We shall show the fundamental role of the Mittag-Leffler function, whose properties are reported in an ad hoc Appendix. The topics discussed here will be: (a) essentials of Riemann-Liouville fractional calculus with basic formulas of Laplace transforms, (b) Abel type integral equations of first and second kind, (c) relaxation and oscillation type differential equations of fractional order.
7 schema:editor N50b5a2752c9748a98cf2a548e0f0e25a
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nb86f0885434441c5abd69d3913b94b23
11 schema:keywords Abel-type integral equations
12 Laplace
13 Laplace transform
14 Mittag-Leffler function
15 Riemann-Liouville fractional calculus
16 appendix
17 applied scientists
18 attention
19 basic formula
20 calculus
21 differential equations
22 differentiation
23 equations
24 essential
25 formula
26 fractional calculus
27 fractional differentiation
28 fractional integration
29 fractional order
30 framework
31 function
32 fundamental role
33 generality
34 integral equations
35 integration
36 kind
37 lectures
38 linear
39 linear operators
40 mathematical rigor
41 operators
42 order
43 particular attention
44 properties
45 relaxation
46 rigor
47 role
48 scientists
49 second kind
50 simple linear
51 solution
52 technique
53 technique of Laplace
54 topic
55 transform
56 type differential equations
57 type integral equations
58 way
59 schema:name Fractional Calculus
60 schema:pagination 223-276
61 schema:productId N42b71bfee9f0477795f667037154f4eb
62 Nf82231343ae04d79a388d71e50976fd4
63 schema:publisher N98844fc0fa5a4f069ebfb2fb40731550
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038872226
65 https://doi.org/10.1007/978-3-7091-2664-6_5
66 schema:sdDatePublished 2022-12-01T06:52
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N653fd9e7fc724713ae3b5f22b83cb41b
69 schema:url https://doi.org/10.1007/978-3-7091-2664-6_5
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N0d5e19ab5fa24f1495bb071a62964176 schema:familyName Mainardi
74 schema:givenName F.
75 rdf:type schema:Person
76 N42b71bfee9f0477795f667037154f4eb schema:name dimensions_id
77 schema:value pub.1038872226
78 rdf:type schema:PropertyValue
79 N49fd09777b044da3a1380c9af5ad44ea rdf:first sg:person.015631105351.54
80 rdf:rest Na2428c75f1524df7b1af4c6f95a6c1f5
81 N50b5a2752c9748a98cf2a548e0f0e25a rdf:first N75137309aa9b4a139a53b5e05464647d
82 rdf:rest Nf2d342530cb94d81ad49c80c986dbe03
83 N653fd9e7fc724713ae3b5f22b83cb41b schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N75137309aa9b4a139a53b5e05464647d schema:familyName Carpinteri
86 schema:givenName A.
87 rdf:type schema:Person
88 N98844fc0fa5a4f069ebfb2fb40731550 schema:name Springer Nature
89 rdf:type schema:Organisation
90 Na2428c75f1524df7b1af4c6f95a6c1f5 rdf:first sg:person.012466376015.11
91 rdf:rest rdf:nil
92 Nb86f0885434441c5abd69d3913b94b23 schema:isbn 978-3-211-82913-4
93 978-3-7091-2664-6
94 schema:name Fractals and Fractional Calculus in Continuum Mechanics
95 rdf:type schema:Book
96 Nf2d342530cb94d81ad49c80c986dbe03 rdf:first N0d5e19ab5fa24f1495bb071a62964176
97 rdf:rest rdf:nil
98 Nf82231343ae04d79a388d71e50976fd4 schema:name doi
99 schema:value 10.1007/978-3-7091-2664-6_5
100 rdf:type schema:PropertyValue
101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
102 schema:name Mathematical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
105 schema:name Pure Mathematics
106 rdf:type schema:DefinedTerm
107 sg:person.012466376015.11 schema:affiliation grid-institutes:grid.6292.f
108 schema:familyName Mainardi
109 schema:givenName F.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012466376015.11
111 rdf:type schema:Person
112 sg:person.015631105351.54 schema:affiliation grid-institutes:grid.14095.39
113 schema:familyName Gorenflo
114 schema:givenName R.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631105351.54
116 rdf:type schema:Person
117 grid-institutes:grid.14095.39 schema:alternateName Free University of Berlin, Berlin, Germany
118 schema:name Free University of Berlin, Berlin, Germany
119 rdf:type schema:Organization
120 grid-institutes:grid.6292.f schema:alternateName University of Bologna, Bologna, Italy
121 schema:name University of Bologna, Bologna, Italy
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...