Invariant Manifold Representations of Nonlinear Modes of Vibration View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Steven W. Shaw

ABSTRACT

This chapter describes the definition and use of modes of vibration in terms of invariant manifolds. The goal of this chapter is to provide some basic background in terms of the terminology, ideas, and constructive methods for nonlinear modes using invariant manifolds. A range of formulations and applications are summarized and an example is presented that demonstrates the main ideas for a system with nonsychronous modes. More... »

PAGES

47-74

Book

TITLE

Modal Analysis of Nonlinear Mechanical Systems

ISBN

978-3-7091-1790-3
978-3-7091-1791-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2

DOI

http://dx.doi.org/10.1007/978-3-7091-1791-0_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010862328


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Steven W.", 
        "id": "sg:person.016303032223.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "This chapter describes the definition and use of modes of vibration in terms of invariant manifolds. The goal of this chapter is to provide some basic background in terms of the terminology, ideas, and constructive methods for nonlinear modes using invariant manifolds. A range of formulations and applications are summarized and an example is presented that demonstrates the main ideas for a system with nonsychronous modes.", 
    "editor": [
      {
        "familyName": "Kerschen", 
        "givenName": "Gaetan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7091-1791-0_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7091-1790-3", 
        "978-3-7091-1791-0"
      ], 
      "name": "Modal Analysis of Nonlinear Mechanical Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "invariant manifolds", 
      "nonlinear modes", 
      "constructive method", 
      "manifold representation", 
      "main idea", 
      "manifold", 
      "basic background", 
      "range of formulations", 
      "formulation", 
      "idea", 
      "vibration", 
      "terms", 
      "representation", 
      "applications", 
      "system", 
      "chapter", 
      "definition", 
      "mode", 
      "use of mode", 
      "goal", 
      "terminology", 
      "use", 
      "background", 
      "range", 
      "example", 
      "method", 
      "nonsychronous modes", 
      "Invariant Manifold Representations"
    ], 
    "name": "Invariant Manifold Representations of Nonlinear Modes of Vibration", 
    "pagination": "47-74", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010862328"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7091-1791-0_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7091-1791-0_2", 
      "https://app.dimensions.ai/details/publication/pub.1010862328"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_413.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-7091-1791-0_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      23 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7091-1791-0_2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2453c594525a450fa86a6be4710877c4
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description This chapter describes the definition and use of modes of vibration in terms of invariant manifolds. The goal of this chapter is to provide some basic background in terms of the terminology, ideas, and constructive methods for nonlinear modes using invariant manifolds. A range of formulations and applications are summarized and an example is presented that demonstrates the main ideas for a system with nonsychronous modes.
7 schema:editor N60d7fc4b8e054d048f4cef39b1cda54b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N7faa8e682a1245478a62c85abe438648
12 schema:keywords Invariant Manifold Representations
13 applications
14 background
15 basic background
16 chapter
17 constructive method
18 definition
19 example
20 formulation
21 goal
22 idea
23 invariant manifolds
24 main idea
25 manifold
26 manifold representation
27 method
28 mode
29 nonlinear modes
30 nonsychronous modes
31 range
32 range of formulations
33 representation
34 system
35 terminology
36 terms
37 use
38 use of mode
39 vibration
40 schema:name Invariant Manifold Representations of Nonlinear Modes of Vibration
41 schema:pagination 47-74
42 schema:productId Na4085e4735444283b1ca3bc62b03897c
43 Nfecf41d2039244adbf275afe3c00ad20
44 schema:publisher Nec59d7938a66419eb57285967316870a
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010862328
46 https://doi.org/10.1007/978-3-7091-1791-0_2
47 schema:sdDatePublished 2021-11-01T19:00
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N1e4aa46c096c47d2a487913facaa6078
50 schema:url https://doi.org/10.1007/978-3-7091-1791-0_2
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N1d2c319e3c1048ad82784a2b60854df0 schema:familyName Kerschen
55 schema:givenName Gaetan
56 rdf:type schema:Person
57 N1e4aa46c096c47d2a487913facaa6078 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N2453c594525a450fa86a6be4710877c4 rdf:first sg:person.016303032223.67
60 rdf:rest rdf:nil
61 N60d7fc4b8e054d048f4cef39b1cda54b rdf:first N1d2c319e3c1048ad82784a2b60854df0
62 rdf:rest rdf:nil
63 N7faa8e682a1245478a62c85abe438648 schema:isbn 978-3-7091-1790-3
64 978-3-7091-1791-0
65 schema:name Modal Analysis of Nonlinear Mechanical Systems
66 rdf:type schema:Book
67 Na4085e4735444283b1ca3bc62b03897c schema:name doi
68 schema:value 10.1007/978-3-7091-1791-0_2
69 rdf:type schema:PropertyValue
70 Nec59d7938a66419eb57285967316870a schema:name Springer Nature
71 rdf:type schema:Organisation
72 Nfecf41d2039244adbf275afe3c00ad20 schema:name dimensions_id
73 schema:value pub.1010862328
74 rdf:type schema:PropertyValue
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:person.016303032223.67 schema:affiliation grid-institutes:grid.17088.36
82 schema:familyName Shaw
83 schema:givenName Steven W.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67
85 rdf:type schema:Person
86 grid-institutes:grid.17088.36 schema:alternateName Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, USA
87 schema:name Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, USA
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...