Invariant Manifold Representations of Nonlinear Modes of Vibration View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Steven W. Shaw

ABSTRACT

This chapter describes the definition and use of modes of vibration in terms of invariant manifolds. The goal of this chapter is to provide some basic background in terms of the terminology, ideas, and constructive methods for nonlinear modes using invariant manifolds. A range of formulations and applications are summarized and an example is presented that demonstrates the main ideas for a system with nonsychronous modes. More... »

PAGES

47-74

Book

TITLE

Modal Analysis of Nonlinear Mechanical Systems

ISBN

978-3-7091-1790-3
978-3-7091-1791-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2

DOI

http://dx.doi.org/10.1007/978-3-7091-1791-0_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010862328


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Steven W.", 
        "id": "sg:person.016303032223.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "This chapter describes the definition and use of modes of vibration in terms of invariant manifolds. The goal of this chapter is to provide some basic background in terms of the terminology, ideas, and constructive methods for nonlinear modes using invariant manifolds. A range of formulations and applications are summarized and an example is presented that demonstrates the main ideas for a system with nonsychronous modes.", 
    "editor": [
      {
        "familyName": "Kerschen", 
        "givenName": "Gaetan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-7091-1791-0_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-7091-1790-3", 
        "978-3-7091-1791-0"
      ], 
      "name": "Modal Analysis of Nonlinear Mechanical Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "invariant manifolds", 
      "nonlinear modes", 
      "constructive method", 
      "manifold representation", 
      "main idea", 
      "manifold", 
      "basic background", 
      "range of formulations", 
      "formulation", 
      "idea", 
      "vibration", 
      "terms", 
      "representation", 
      "applications", 
      "system", 
      "chapter", 
      "definition", 
      "mode", 
      "use of mode", 
      "goal", 
      "terminology", 
      "use", 
      "background", 
      "range", 
      "example", 
      "method", 
      "nonsychronous modes", 
      "Invariant Manifold Representations"
    ], 
    "name": "Invariant Manifold Representations of Nonlinear Modes of Vibration", 
    "pagination": "47-74", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010862328"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-7091-1791-0_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-7091-1791-0_2", 
      "https://app.dimensions.ai/details/publication/pub.1010862328"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_307.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-7091-1791-0_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-7091-1791-0_2'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      23 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-7091-1791-0_2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc42f62fb56e64300ac38e469f6554651
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description This chapter describes the definition and use of modes of vibration in terms of invariant manifolds. The goal of this chapter is to provide some basic background in terms of the terminology, ideas, and constructive methods for nonlinear modes using invariant manifolds. A range of formulations and applications are summarized and an example is presented that demonstrates the main ideas for a system with nonsychronous modes.
7 schema:editor N8b6bb8eabf644712b909d083bcffe3bd
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1089f88e7df6495c9bd4f3c210a975e4
12 schema:keywords Invariant Manifold Representations
13 applications
14 background
15 basic background
16 chapter
17 constructive method
18 definition
19 example
20 formulation
21 goal
22 idea
23 invariant manifolds
24 main idea
25 manifold
26 manifold representation
27 method
28 mode
29 nonlinear modes
30 nonsychronous modes
31 range
32 range of formulations
33 representation
34 system
35 terminology
36 terms
37 use
38 use of mode
39 vibration
40 schema:name Invariant Manifold Representations of Nonlinear Modes of Vibration
41 schema:pagination 47-74
42 schema:productId N849b47b6aee14f678deecc4fb60551f7
43 N8b84f8e38073428894945a7d9cb98e55
44 schema:publisher N9e8c1e3cc7654b7d8a2f2827b5a3ac3a
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010862328
46 https://doi.org/10.1007/978-3-7091-1791-0_2
47 schema:sdDatePublished 2022-01-01T19:18
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N85ccbcab4e0f4d9298d88b250a293e31
50 schema:url https://doi.org/10.1007/978-3-7091-1791-0_2
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N1089f88e7df6495c9bd4f3c210a975e4 schema:isbn 978-3-7091-1790-3
55 978-3-7091-1791-0
56 schema:name Modal Analysis of Nonlinear Mechanical Systems
57 rdf:type schema:Book
58 N849b47b6aee14f678deecc4fb60551f7 schema:name doi
59 schema:value 10.1007/978-3-7091-1791-0_2
60 rdf:type schema:PropertyValue
61 N85ccbcab4e0f4d9298d88b250a293e31 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N8b6bb8eabf644712b909d083bcffe3bd rdf:first Ne0885e27603e44a79f419b3c7e78520f
64 rdf:rest rdf:nil
65 N8b84f8e38073428894945a7d9cb98e55 schema:name dimensions_id
66 schema:value pub.1010862328
67 rdf:type schema:PropertyValue
68 N9e8c1e3cc7654b7d8a2f2827b5a3ac3a schema:name Springer Nature
69 rdf:type schema:Organisation
70 Nc42f62fb56e64300ac38e469f6554651 rdf:first sg:person.016303032223.67
71 rdf:rest rdf:nil
72 Ne0885e27603e44a79f419b3c7e78520f schema:familyName Kerschen
73 schema:givenName Gaetan
74 rdf:type schema:Person
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:person.016303032223.67 schema:affiliation grid-institutes:grid.17088.36
82 schema:familyName Shaw
83 schema:givenName Steven W.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67
85 rdf:type schema:Person
86 grid-institutes:grid.17088.36 schema:alternateName Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, USA
87 schema:name Department of Mechanical Engineering, Michigan State University, 48824, East Lansing, MI, USA
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...