Nanoribbons View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Toshiaki Enoki , Shintaro Sato

ABSTRACT

Graphene nanoribbons have intriguing electronic structures, which are large edge geometry dependent. Armchair-edged graphene nanoribbons, which are energetically stable, have a ribbon-width-dependent intrinsic energy gap, while zigzag-edged ones have spin-polarized nonbonding edge states in the vicinity of the edge region. The edge state is the origin of electronic, magnetic and chemical activities. These features of the electronic structures can be characterized using microprobe techniques such as scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, x-ray absorption, angle-resolved photoemission spectroscopy, electron transport, and magnetic measurements. Graphene nanostructures are synthesized using top-down and bottom-up methods, in the latter of which graphene nanostructures with atomically precise edges can be created. The presence of bandgap, which varies depending on the ribbon width and the edge geometry, makes graphene an important candidate for electronics device applications. The spin-polarized edge states localized in the vicinity of edges in zigzag-edged nanoribbons are expected to be utilized for spintronics applications. More... »

PAGES

303-333

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-54357-3_10

DOI

http://dx.doi.org/10.1007/978-3-662-54357-3_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092555996


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Dept. of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enoki", 
        "givenName": "Toshiaki", 
        "id": "sg:person.011542125231.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542125231.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Devices & Materials Laboratories, Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, 243-0197, Atsugi, Kanagawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.418251.b", 
          "name": [
            "Devices & Materials Laboratories, Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, 243-0197, Atsugi, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sato", 
        "givenName": "Shintaro", 
        "id": "sg:person.010576310213.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010576310213.51"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Graphene nanoribbons have intriguing electronic structures, which are large edge geometry dependent. Armchair-edged graphene nanoribbons, which are energetically stable, have a\u00a0ribbon-width-dependent intrinsic energy gap, while zigzag-edged ones have spin-polarized nonbonding edge states in the vicinity of the edge region. The edge state is the origin of electronic, magnetic and chemical activities. These features of the electronic structures can be characterized using microprobe techniques such as scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, x-ray absorption, angle-resolved photoemission spectroscopy, electron transport, and magnetic measurements. Graphene nanostructures are synthesized using top-down and bottom-up methods, in the latter of which graphene nanostructures with atomically precise edges can be created. The presence of bandgap, which varies depending on the ribbon width and the edge geometry, makes graphene an important candidate for electronics device applications. The spin-polarized edge states localized in the vicinity of edges in zigzag-edged nanoribbons are expected to be utilized for spintronics applications.", 
    "editor": [
      {
        "familyName": "Bhushan", 
        "givenName": "Bharat", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-54357-3_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-54355-9", 
        "978-3-662-54357-3"
      ], 
      "name": "Springer Handbook of Nanotechnology", 
      "type": "Book"
    }, 
    "keywords": [
      "transmission electron microscopy", 
      "atomic force microscopy", 
      "edge states", 
      "graphene nanoribbons", 
      "angle-resolved photoemission spectroscopy", 
      "tunneling microscopy/spectroscopy", 
      "spin-polarized edge states", 
      "electronic structure", 
      "armchair-edge graphene nanoribbons", 
      "microscopy/spectroscopy", 
      "intriguing electronic structure", 
      "electronic device applications", 
      "zigzag-edged nanoribbons", 
      "intrinsic energy gap", 
      "graphene nanostructures", 
      "photoemission spectroscopy", 
      "spintronic applications", 
      "energy gap", 
      "force microscopy", 
      "device applications", 
      "ray absorption", 
      "Raman spectroscopy", 
      "ribbon width", 
      "nanoribbons", 
      "electron microscopy", 
      "precise edges", 
      "electron transport", 
      "magnetic measurements", 
      "edge region", 
      "spectroscopy", 
      "microprobe techniques", 
      "important candidates", 
      "microscopy", 
      "edge geometry", 
      "chemical activity", 
      "nanostructures", 
      "bandgap", 
      "applications", 
      "state", 
      "vicinity", 
      "edge", 
      "vicinity of edges", 
      "absorption", 
      "geometry", 
      "width", 
      "structure", 
      "measurements", 
      "gap", 
      "candidates", 
      "transport", 
      "technique", 
      "latter", 
      "region", 
      "origin", 
      "method", 
      "bottom", 
      "one", 
      "features", 
      "activity", 
      "presence"
    ], 
    "name": "Nanoribbons", 
    "pagination": "303-333", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092555996"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-54357-3_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-54357-3_10", 
      "https://app.dimensions.ai/details/publication/pub.1092555996"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_461.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-54357-3_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-54357-3_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-54357-3_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-54357-3_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-54357-3_10'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      23 PREDICATES      91 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-54357-3_10 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0299
4 anzsrc-for:03
5 anzsrc-for:0306
6 anzsrc-for:10
7 anzsrc-for:1007
8 schema:author Na11d2b592c574594a612f10c8b8a189a
9 schema:datePublished 2017
10 schema:datePublishedReg 2017-01-01
11 schema:description Graphene nanoribbons have intriguing electronic structures, which are large edge geometry dependent. Armchair-edged graphene nanoribbons, which are energetically stable, have a ribbon-width-dependent intrinsic energy gap, while zigzag-edged ones have spin-polarized nonbonding edge states in the vicinity of the edge region. The edge state is the origin of electronic, magnetic and chemical activities. These features of the electronic structures can be characterized using microprobe techniques such as scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, x-ray absorption, angle-resolved photoemission spectroscopy, electron transport, and magnetic measurements. Graphene nanostructures are synthesized using top-down and bottom-up methods, in the latter of which graphene nanostructures with atomically precise edges can be created. The presence of bandgap, which varies depending on the ribbon width and the edge geometry, makes graphene an important candidate for electronics device applications. The spin-polarized edge states localized in the vicinity of edges in zigzag-edged nanoribbons are expected to be utilized for spintronics applications.
12 schema:editor Neb82cffd44704ab4b72a9eae08978ff3
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Na1a51cf9499e40c88ec6c49ea3abfda9
17 schema:keywords Raman spectroscopy
18 absorption
19 activity
20 angle-resolved photoemission spectroscopy
21 applications
22 armchair-edge graphene nanoribbons
23 atomic force microscopy
24 bandgap
25 bottom
26 candidates
27 chemical activity
28 device applications
29 edge
30 edge geometry
31 edge region
32 edge states
33 electron microscopy
34 electron transport
35 electronic device applications
36 electronic structure
37 energy gap
38 features
39 force microscopy
40 gap
41 geometry
42 graphene nanoribbons
43 graphene nanostructures
44 important candidates
45 intriguing electronic structure
46 intrinsic energy gap
47 latter
48 magnetic measurements
49 measurements
50 method
51 microprobe techniques
52 microscopy
53 microscopy/spectroscopy
54 nanoribbons
55 nanostructures
56 one
57 origin
58 photoemission spectroscopy
59 precise edges
60 presence
61 ray absorption
62 region
63 ribbon width
64 spectroscopy
65 spin-polarized edge states
66 spintronic applications
67 state
68 structure
69 technique
70 transmission electron microscopy
71 transport
72 tunneling microscopy/spectroscopy
73 vicinity
74 vicinity of edges
75 width
76 zigzag-edged nanoribbons
77 schema:name Nanoribbons
78 schema:pagination 303-333
79 schema:productId N9717a0dbff254f6c9f227d8cb5e9dbc3
80 Nc3909850809f488ab34fca6587dac378
81 schema:publisher N7ec5b2b89ae1437db9a33026114c8fbe
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092555996
83 https://doi.org/10.1007/978-3-662-54357-3_10
84 schema:sdDatePublished 2022-05-20T07:48
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N10fa25787ff04f168c79ecdca1ecd1c5
87 schema:url https://doi.org/10.1007/978-3-662-54357-3_10
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N10fa25787ff04f168c79ecdca1ecd1c5 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N4de9ace377e4455a85b4f81394849bff schema:familyName Bhushan
94 schema:givenName Bharat
95 rdf:type schema:Person
96 N54545ae447324adca0c103f2a650c5a8 rdf:first sg:person.010576310213.51
97 rdf:rest rdf:nil
98 N7ec5b2b89ae1437db9a33026114c8fbe schema:name Springer Nature
99 rdf:type schema:Organisation
100 N9717a0dbff254f6c9f227d8cb5e9dbc3 schema:name dimensions_id
101 schema:value pub.1092555996
102 rdf:type schema:PropertyValue
103 Na11d2b592c574594a612f10c8b8a189a rdf:first sg:person.011542125231.40
104 rdf:rest N54545ae447324adca0c103f2a650c5a8
105 Na1a51cf9499e40c88ec6c49ea3abfda9 schema:isbn 978-3-662-54355-9
106 978-3-662-54357-3
107 schema:name Springer Handbook of Nanotechnology
108 rdf:type schema:Book
109 Nc3909850809f488ab34fca6587dac378 schema:name doi
110 schema:value 10.1007/978-3-662-54357-3_10
111 rdf:type schema:PropertyValue
112 Neb82cffd44704ab4b72a9eae08978ff3 rdf:first N4de9ace377e4455a85b4f81394849bff
113 rdf:rest rdf:nil
114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
118 schema:name Condensed Matter Physics
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
121 schema:name Other Physical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
124 schema:name Chemical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
127 schema:name Physical Chemistry (incl. Structural)
128 rdf:type schema:DefinedTerm
129 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
130 schema:name Technology
131 rdf:type schema:DefinedTerm
132 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
133 schema:name Nanotechnology
134 rdf:type schema:DefinedTerm
135 sg:person.010576310213.51 schema:affiliation grid-institutes:grid.418251.b
136 schema:familyName Sato
137 schema:givenName Shintaro
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010576310213.51
139 rdf:type schema:Person
140 sg:person.011542125231.40 schema:affiliation grid-institutes:grid.32197.3e
141 schema:familyName Enoki
142 schema:givenName Toshiaki
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542125231.40
144 rdf:type schema:Person
145 grid-institutes:grid.32197.3e schema:alternateName Dept. of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
146 schema:name Dept. of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
147 rdf:type schema:Organization
148 grid-institutes:grid.418251.b schema:alternateName Devices & Materials Laboratories, Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, 243-0197, Atsugi, Kanagawa, Japan
149 schema:name Devices & Materials Laboratories, Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, 243-0197, Atsugi, Kanagawa, Japan
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...