From Indifferentiability to Constructive Cryptography (and Back) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-10-22

AUTHORS

Ueli Maurer , Renato Renner

ABSTRACT

The concept of indifferentiability of systems, a generalized form of indistinguishability, was proposed in 2004 to provide a simplified and generalized explanation of impossibility results like the non-instantiability of random oracles by hash functions due to Canetti, Goldreich, and Halevi (STOC 1998). But indifferentiability is actually a constructive notion, leading to possibility results. For example, Coron et al. (Crypto 2005) argued that the soundness of the construction C(f) of a hash function from a compression function f can be demonstrated by proving that C(R) is indifferentiable from a random oracle if R is an ideal random compression function.The purpose of this short paper is to describe how the indifferentiability notion was a precursor to the theory of constructive cryptography and thereby to provide a simplified and generalized treatment of indifferentiability as a special type of constructive statement. More... »

PAGES

3-24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-53641-4_1

DOI

http://dx.doi.org/10.1007/978-3-662-53641-4_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018643949


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, ETH Zurich, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maurer", 
        "givenName": "Ueli", 
        "id": "sg:person.01316567627.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, ETH Zurich, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Physics, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Renner", 
        "givenName": "Renato", 
        "id": "sg:person.01142624157.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142624157.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-10-22", 
    "datePublishedReg": "2016-10-22", 
    "description": "The concept of indifferentiability of systems, a generalized form of indistinguishability, was proposed in 2004 to provide a simplified and generalized explanation of impossibility results like the non-instantiability of random oracles by hash functions due to Canetti, Goldreich, and Halevi (STOC 1998). But indifferentiability is actually a constructive notion, leading to possibility results. For example, Coron et al. (Crypto 2005) argued that the soundness of the construction C(f) of a hash function from a compression function f can be demonstrated by proving that C(R) is indifferentiable from a random oracle if R is an ideal random compression function.The purpose of this short paper is to describe how the indifferentiability notion was a precursor to the theory of constructive cryptography and thereby to provide a simplified and generalized treatment of indifferentiability as a special type of constructive statement.", 
    "editor": [
      {
        "familyName": "Hirt", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Smith", 
        "givenName": "Adam", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-53641-4_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-53640-7", 
        "978-3-662-53641-4"
      ], 
      "name": "Theory of Cryptography", 
      "type": "Book"
    }, 
    "keywords": [
      "constructive cryptography", 
      "hash function", 
      "random oracles", 
      "function f", 
      "generalized treatment", 
      "special type", 
      "Coron et al", 
      "constructive statements", 
      "compression function", 
      "cryptography", 
      "impossibility results", 
      "oracle", 
      "et al", 
      "indifferentiability", 
      "short paper", 
      "Goldreich", 
      "theory", 
      "function", 
      "constructive notion", 
      "indistinguishability", 
      "notion", 
      "Canetti", 
      "possibility results", 
      "generalized explanation", 
      "Halevi", 
      "soundness", 
      "system", 
      "results", 
      "construction", 
      "al", 
      "concept", 
      "form", 
      "example", 
      "statements", 
      "types", 
      "explanation", 
      "purpose", 
      "precursors", 
      "treatment", 
      "paper"
    ], 
    "name": "From Indifferentiability to Constructive Cryptography (and Back)", 
    "pagination": "3-24", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018643949"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-53641-4_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-53641-4_1", 
      "https://app.dimensions.ai/details/publication/pub.1018643949"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_104.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-53641-4_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-53641-4_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-53641-4_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-53641-4_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-53641-4_1'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-53641-4_1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na2868730e0854dd79dcaeb0998329d07
4 schema:datePublished 2016-10-22
5 schema:datePublishedReg 2016-10-22
6 schema:description The concept of indifferentiability of systems, a generalized form of indistinguishability, was proposed in 2004 to provide a simplified and generalized explanation of impossibility results like the non-instantiability of random oracles by hash functions due to Canetti, Goldreich, and Halevi (STOC 1998). But indifferentiability is actually a constructive notion, leading to possibility results. For example, Coron et al. (Crypto 2005) argued that the soundness of the construction C(f) of a hash function from a compression function f can be demonstrated by proving that C(R) is indifferentiable from a random oracle if R is an ideal random compression function.The purpose of this short paper is to describe how the indifferentiability notion was a precursor to the theory of constructive cryptography and thereby to provide a simplified and generalized treatment of indifferentiability as a special type of constructive statement.
7 schema:editor N9335fcef0267436c9471e086a32b7be2
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N231c42c053b9468eab032bc135b163e5
12 schema:keywords Canetti
13 Coron et al
14 Goldreich
15 Halevi
16 al
17 compression function
18 concept
19 construction
20 constructive cryptography
21 constructive notion
22 constructive statements
23 cryptography
24 et al
25 example
26 explanation
27 form
28 function
29 function f
30 generalized explanation
31 generalized treatment
32 hash function
33 impossibility results
34 indifferentiability
35 indistinguishability
36 notion
37 oracle
38 paper
39 possibility results
40 precursors
41 purpose
42 random oracles
43 results
44 short paper
45 soundness
46 special type
47 statements
48 system
49 theory
50 treatment
51 types
52 schema:name From Indifferentiability to Constructive Cryptography (and Back)
53 schema:pagination 3-24
54 schema:productId N674d4082af184d0a84fe98dd6c99db5e
55 Nf573b3ac55b24a55b9849102dde334bc
56 schema:publisher N6057a891935349debc0ccebc389f4e00
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018643949
58 https://doi.org/10.1007/978-3-662-53641-4_1
59 schema:sdDatePublished 2022-05-10T10:36
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N488e7a7d6b6d4f1db310f1fc535fb5c2
62 schema:url https://doi.org/10.1007/978-3-662-53641-4_1
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N20d5c32926274aaf97bc1a3baac2404e schema:familyName Smith
67 schema:givenName Adam
68 rdf:type schema:Person
69 N231c42c053b9468eab032bc135b163e5 schema:isbn 978-3-662-53640-7
70 978-3-662-53641-4
71 schema:name Theory of Cryptography
72 rdf:type schema:Book
73 N488e7a7d6b6d4f1db310f1fc535fb5c2 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N6057a891935349debc0ccebc389f4e00 schema:name Springer Nature
76 rdf:type schema:Organisation
77 N674d4082af184d0a84fe98dd6c99db5e schema:name dimensions_id
78 schema:value pub.1018643949
79 rdf:type schema:PropertyValue
80 N9335fcef0267436c9471e086a32b7be2 rdf:first Nbe6fa3d72d2a48b38457fb044dd74fad
81 rdf:rest Nad19fba9a41f4c6893bfec5398d554f9
82 Na2868730e0854dd79dcaeb0998329d07 rdf:first sg:person.01316567627.91
83 rdf:rest Nba17ebb98d71435b91c3561edc7187c3
84 Nad19fba9a41f4c6893bfec5398d554f9 rdf:first N20d5c32926274aaf97bc1a3baac2404e
85 rdf:rest rdf:nil
86 Nba17ebb98d71435b91c3561edc7187c3 rdf:first sg:person.01142624157.34
87 rdf:rest rdf:nil
88 Nbe6fa3d72d2a48b38457fb044dd74fad schema:familyName Hirt
89 schema:givenName Martin
90 rdf:type schema:Person
91 Nf573b3ac55b24a55b9849102dde334bc schema:name doi
92 schema:value 10.1007/978-3-662-53641-4_1
93 rdf:type schema:PropertyValue
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
98 schema:name Pure Mathematics
99 rdf:type schema:DefinedTerm
100 sg:person.01142624157.34 schema:affiliation grid-institutes:grid.5801.c
101 schema:familyName Renner
102 schema:givenName Renato
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142624157.34
104 rdf:type schema:Person
105 sg:person.01316567627.91 schema:affiliation grid-institutes:grid.5801.c
106 schema:familyName Maurer
107 schema:givenName Ueli
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91
109 rdf:type schema:Person
110 grid-institutes:grid.5801.c schema:alternateName Department of Computer Science, ETH Zurich, Zurich, Switzerland
111 Department of Physics, ETH Zurich, Zurich, Switzerland
112 schema:name Department of Computer Science, ETH Zurich, Zurich, Switzerland
113 Department of Physics, ETH Zurich, Zurich, Switzerland
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...