Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016-07-20

AUTHORS

Anne Canteaut , Sergiu Carpov , Caroline Fontaine , Tancrède Lepoint , María Naya-Plasencia , Pascal Paillier , Renaud Sirdey

ABSTRACT

In typical applications of homomorphic encryption, the first step consists for Alice to encrypt some plaintext m under Bob’s public key \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {pk}$$\end{document} and to send the ciphertext \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c = \mathsf {HE}_{\mathsf {pk}}(m)$$\end{document} to some third-party evaluator Charlie. This paper specifically considers that first step, i.e. the problem of transmitting c as efficiently as possible from Alice to Charlie. As previously noted, a form of compression is achieved using hybrid encryption. Given a symmetric encryption scheme \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {E}$$\end{document}, Alice picks a random key k and sends a much smaller ciphertext \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c' = (\mathsf {HE}_{\mathsf {pk}}(k), \mathsf {E}_k(m))$$\end{document} that Charlie decompresses homomorphically into the original c using a decryption circuit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_{{\mathsf {E}^{-1}}}$$\end{document}.In this paper, we revisit that paradigm in light of its concrete implementation constraints; in particular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {E}$$\end{document} is chosen to be an additive IV-based stream cipher. We investigate the performances offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we also propose a variant with 128-bit security: Kreyvium. We show that Trivium, whose security has been firmly established for over a decade, and the new variant Kreyvium have an excellent performance. More... »

PAGES

313-333

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-52993-5_16

DOI

http://dx.doi.org/10.1007/978-3-662-52993-5_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052565510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Inria, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Inria, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canteaut", 
        "givenName": "Anne", 
        "id": "sg:person.012730266023.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012730266023.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA LIST, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.457331.7", 
          "name": [
            "CEA LIST, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carpov", 
        "givenName": "Sergiu", 
        "id": "sg:person.010274176421.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274176421.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS/Lab-STICC and Telecom Bretagne and UEB, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.486295.4", 
          "name": [
            "CNRS/Lab-STICC and Telecom Bretagne and UEB, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fontaine", 
        "givenName": "Caroline", 
        "id": "sg:person.07527114203.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527114203.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CryptoExperts, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.470554.7", 
          "name": [
            "CryptoExperts, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lepoint", 
        "givenName": "Tancr\u00e8de", 
        "id": "sg:person.016132517751.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016132517751.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inria, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.5328.c", 
          "name": [
            "Inria, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naya-Plasencia", 
        "givenName": "Mar\u00eda", 
        "id": "sg:person.013206304341.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206304341.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CryptoExperts, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.470554.7", 
          "name": [
            "CryptoExperts, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paillier", 
        "givenName": "Pascal", 
        "id": "sg:person.012202553435.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202553435.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA LIST, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.457331.7", 
          "name": [
            "CEA LIST, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sirdey", 
        "givenName": "Renaud", 
        "id": "sg:person.011511456441.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511456441.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-07-20", 
    "datePublishedReg": "2016-07-20", 
    "description": "In typical applications of homomorphic encryption, the first step consists for Alice to encrypt some plaintext m under Bob\u2019s public key \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathsf {pk}$$\\end{document} and to send the ciphertext \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$c = \\mathsf {HE}_{\\mathsf {pk}}(m)$$\\end{document} to some third-party evaluator Charlie. This paper specifically considers that first step, i.e. the problem of transmitting c as efficiently as possible from Alice to Charlie. As previously noted, a form of compression is achieved using hybrid encryption. Given a symmetric encryption scheme \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathsf {E}$$\\end{document}, Alice picks a random key k and sends a much smaller ciphertext \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$c' = (\\mathsf {HE}_{\\mathsf {pk}}(k), \\mathsf {E}_k(m))$$\\end{document} that Charlie decompresses homomorphically into the original c using a decryption circuit \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {C}_{{\\mathsf {E}^{-1}}}$$\\end{document}.In this paper, we revisit that paradigm in light of its concrete implementation constraints; in particular \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathsf {E}$$\\end{document} is chosen to be an additive IV-based stream cipher. We investigate the performances offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we also propose a variant with 128-bit security: Kreyvium. We show that Trivium, whose security has been firmly established for over a decade, and the new variant Kreyvium have an excellent performance.", 
    "editor": [
      {
        "familyName": "Peyrin", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-52993-5_16", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-662-52992-8", 
        "978-3-662-52993-5"
      ], 
      "name": "Fast Software Encryption", 
      "type": "Book"
    }, 
    "keywords": [
      "typical applications", 
      "encryption", 
      "first step", 
      "public key", 
      "form of compression", 
      "compression", 
      "hybrid encryption", 
      "symmetric encryption scheme", 
      "smaller ciphertext", 
      "decryption circuit", 
      "circuit", 
      "implementation constraints", 
      "stream cipher", 
      "performance", 
      "security", 
      "excellent performance", 
      "practical solution", 
      "applications", 
      "homomorphic encryption", 
      "step", 
      "Alice", 
      "encrypt", 
      "plaintext", 
      "key", 
      "ciphertext", 
      "Charlie", 
      "paper", 
      "problem", 
      "form", 
      "encryption scheme", 
      "scheme", 
      "key K", 
      "paradigm", 
      "light", 
      "constraints", 
      "cipher", 
      "context", 
      "Trivium", 
      "portfolio", 
      "variants", 
      "decades", 
      "solution", 
      "Bob\u2019s public key", 
      "random key k", 
      "Kreyvium"
    ], 
    "name": "Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression", 
    "pagination": "313-333", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052565510"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-52993-5_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-52993-5_16", 
      "https://app.dimensions.ai/details/publication/pub.1052565510"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_422.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-52993-5_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52993-5_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52993-5_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52993-5_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52993-5_16'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-52993-5_16 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Need53738c65e416d860bde396f4bddc3
4 schema:datePublished 2016-07-20
5 schema:datePublishedReg 2016-07-20
6 schema:description In typical applications of homomorphic encryption, the first step consists for Alice to encrypt some plaintext m under Bob’s public key \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {pk}$$\end{document} and to send the ciphertext \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c = \mathsf {HE}_{\mathsf {pk}}(m)$$\end{document} to some third-party evaluator Charlie. This paper specifically considers that first step, i.e. the problem of transmitting c as efficiently as possible from Alice to Charlie. As previously noted, a form of compression is achieved using hybrid encryption. Given a symmetric encryption scheme \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {E}$$\end{document}, Alice picks a random key k and sends a much smaller ciphertext \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c' = (\mathsf {HE}_{\mathsf {pk}}(k), \mathsf {E}_k(m))$$\end{document} that Charlie decompresses homomorphically into the original c using a decryption circuit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_{{\mathsf {E}^{-1}}}$$\end{document}.In this paper, we revisit that paradigm in light of its concrete implementation constraints; in particular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {E}$$\end{document} is chosen to be an additive IV-based stream cipher. We investigate the performances offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we also propose a variant with 128-bit security: Kreyvium. We show that Trivium, whose security has been firmly established for over a decade, and the new variant Kreyvium have an excellent performance.
7 schema:editor N9e26045c872945dab0fc39bd58bc2c7e
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Nf761cd7400294644bbb1583a3aa8a779
11 schema:keywords Alice
12 Bob’s public key
13 Charlie
14 Kreyvium
15 Trivium
16 applications
17 cipher
18 ciphertext
19 circuit
20 compression
21 constraints
22 context
23 decades
24 decryption circuit
25 encrypt
26 encryption
27 encryption scheme
28 excellent performance
29 first step
30 form
31 form of compression
32 homomorphic encryption
33 hybrid encryption
34 implementation constraints
35 key
36 key K
37 light
38 paper
39 paradigm
40 performance
41 plaintext
42 portfolio
43 practical solution
44 problem
45 public key
46 random key k
47 scheme
48 security
49 smaller ciphertext
50 solution
51 step
52 stream cipher
53 symmetric encryption scheme
54 typical applications
55 variants
56 schema:name Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression
57 schema:pagination 313-333
58 schema:productId N40c1e9a4effb43f98f0ba9a41e7a8b51
59 Nfe2a56cad77d42d7a3b243220c03f4a0
60 schema:publisher N0ff02b7eaea740ad933f17a5e4b59fa8
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052565510
62 https://doi.org/10.1007/978-3-662-52993-5_16
63 schema:sdDatePublished 2022-10-01T06:58
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N3abd20b1b5904e819f76a1bfe34820d4
66 schema:url https://doi.org/10.1007/978-3-662-52993-5_16
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N0f8253336dd44f17bf9c1149fe66d3ac rdf:first sg:person.016132517751.03
71 rdf:rest N1956b7f882f547cbab86ad879ad37948
72 N0ff02b7eaea740ad933f17a5e4b59fa8 schema:name Springer Nature
73 rdf:type schema:Organisation
74 N121871e7bd394d9c9420740c33d93cec rdf:first sg:person.010274176421.20
75 rdf:rest N6fefffb511c141d8803f9eceeb3784d6
76 N1956b7f882f547cbab86ad879ad37948 rdf:first sg:person.013206304341.94
77 rdf:rest N35af6a39f1c54a07a9400ca5b0e06cad
78 N35af6a39f1c54a07a9400ca5b0e06cad rdf:first sg:person.012202553435.44
79 rdf:rest N5d651ac543f74440885095422d221f40
80 N3abd20b1b5904e819f76a1bfe34820d4 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N40c1e9a4effb43f98f0ba9a41e7a8b51 schema:name dimensions_id
83 schema:value pub.1052565510
84 rdf:type schema:PropertyValue
85 N5d651ac543f74440885095422d221f40 rdf:first sg:person.011511456441.41
86 rdf:rest rdf:nil
87 N6fefffb511c141d8803f9eceeb3784d6 rdf:first sg:person.07527114203.33
88 rdf:rest N0f8253336dd44f17bf9c1149fe66d3ac
89 N9e26045c872945dab0fc39bd58bc2c7e rdf:first Ne05e10ca5d074dff8ead374177008d03
90 rdf:rest rdf:nil
91 Ne05e10ca5d074dff8ead374177008d03 schema:familyName Peyrin
92 schema:givenName Thomas
93 rdf:type schema:Person
94 Need53738c65e416d860bde396f4bddc3 rdf:first sg:person.012730266023.08
95 rdf:rest N121871e7bd394d9c9420740c33d93cec
96 Nf761cd7400294644bbb1583a3aa8a779 schema:isbn 978-3-662-52992-8
97 978-3-662-52993-5
98 schema:name Fast Software Encryption
99 rdf:type schema:Book
100 Nfe2a56cad77d42d7a3b243220c03f4a0 schema:name doi
101 schema:value 10.1007/978-3-662-52993-5_16
102 rdf:type schema:PropertyValue
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
107 schema:name Data Format
108 rdf:type schema:DefinedTerm
109 sg:person.010274176421.20 schema:affiliation grid-institutes:grid.457331.7
110 schema:familyName Carpov
111 schema:givenName Sergiu
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274176421.20
113 rdf:type schema:Person
114 sg:person.011511456441.41 schema:affiliation grid-institutes:grid.457331.7
115 schema:familyName Sirdey
116 schema:givenName Renaud
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011511456441.41
118 rdf:type schema:Person
119 sg:person.012202553435.44 schema:affiliation grid-institutes:grid.470554.7
120 schema:familyName Paillier
121 schema:givenName Pascal
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012202553435.44
123 rdf:type schema:Person
124 sg:person.012730266023.08 schema:affiliation grid-institutes:grid.5328.c
125 schema:familyName Canteaut
126 schema:givenName Anne
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012730266023.08
128 rdf:type schema:Person
129 sg:person.013206304341.94 schema:affiliation grid-institutes:grid.5328.c
130 schema:familyName Naya-Plasencia
131 schema:givenName María
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013206304341.94
133 rdf:type schema:Person
134 sg:person.016132517751.03 schema:affiliation grid-institutes:grid.470554.7
135 schema:familyName Lepoint
136 schema:givenName Tancrède
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016132517751.03
138 rdf:type schema:Person
139 sg:person.07527114203.33 schema:affiliation grid-institutes:grid.486295.4
140 schema:familyName Fontaine
141 schema:givenName Caroline
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527114203.33
143 rdf:type schema:Person
144 grid-institutes:grid.457331.7 schema:alternateName CEA LIST, Paris, France
145 schema:name CEA LIST, Paris, France
146 rdf:type schema:Organization
147 grid-institutes:grid.470554.7 schema:alternateName CryptoExperts, Paris, France
148 schema:name CryptoExperts, Paris, France
149 rdf:type schema:Organization
150 grid-institutes:grid.486295.4 schema:alternateName CNRS/Lab-STICC and Telecom Bretagne and UEB, Brest, France
151 schema:name CNRS/Lab-STICC and Telecom Bretagne and UEB, Brest, France
152 rdf:type schema:Organization
153 grid-institutes:grid.5328.c schema:alternateName Inria, Paris, France
154 schema:name Inria, Paris, France
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...