Neutron Reflectivity to Characterize Nanostructured Films View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-08-13

AUTHORS

Sirshendu Gayen , Milan K. Sanyal , Max Wolff

ABSTRACT

Neutron reflectivity is a powerful nondestructive technique to characterize thin films and nanostructured materials. This technique works equally well for various types of systems like organic, inorganic, and biological materials both in solid and liquid forms. Neutron reflectivity measurements provide information regarding the thickness and density of a thin film as a function of depth and also about the roughness of the top surface and buried interfaces. In comparison with x-ray reflectivity study, the neutron reflectivity measurements provide much improved contrast for elements with close values of atomic numbers, even for isotopes of same element. Furthermore, the detail of the in-plane spin arrangement can be obtained from polarization analysis. Neutron reflectivity is more than a complementary technique to x-ray reflectivity measurement for structural and morphological studies and is essential for the study of magnetic ordering due to its capability to measure the average magnetic moment in absolute units simultaneously with the structural information. In this chapter we discuss the theory of neutron reflectivity technique and illustrate the merit of this technique with some recent examples. We explain also the analysis techniques of neutron reflectivity data in detail. Although the nature of interaction of neutron with matter is different from that of x-ray, the basic formalism for reflectivity presented here utilizing the wave nature of thermal/cold neutrons remain valid for both measurements. More... »

PAGES

339-373

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10

DOI

http://dx.doi.org/10.1007/978-3-662-52780-1_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085057724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.473481.d", 
          "name": [
            "Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gayen", 
        "givenName": "Sirshendu", 
        "id": "sg:person.01171475041.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171475041.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.473481.d", 
          "name": [
            "Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanyal", 
        "givenName": "Milan K.", 
        "id": "sg:person.012365250614.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365250614.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120, Uppsala, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.8993.b", 
          "name": [
            "Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolff", 
        "givenName": "Max", 
        "id": "sg:person.0771136654.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771136654.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-08-13", 
    "datePublishedReg": "2016-08-13", 
    "description": "Neutron reflectivity is a powerful nondestructive technique to characterize thin films and nanostructured materials. This technique works equally well for various types of systems like organic, inorganic, and biological materials both in solid and liquid forms. Neutron reflectivity measurements provide information regarding the thickness and density of a thin film as a function of depth and also about the roughness of the top surface and buried interfaces. In comparison with x-ray reflectivity study, the neutron reflectivity measurements provide much improved contrast for elements with close values of atomic numbers, even for isotopes of same element. Furthermore, the detail of the in-plane spin arrangement can be obtained from polarization analysis. Neutron reflectivity is more than a complementary technique to x-ray reflectivity measurement for structural and morphological studies and is essential for the study of magnetic ordering due to its capability to measure the average magnetic moment in absolute units simultaneously with the structural information. In this chapter we discuss the theory of neutron reflectivity technique and illustrate the merit of this technique with some recent examples. We explain also the analysis techniques of neutron reflectivity data in detail. Although the nature of interaction of neutron with matter is different from that of x-ray, the basic formalism for reflectivity presented here utilizing the wave nature of thermal/cold neutrons remain valid for both measurements.", 
    "editor": [
      {
        "familyName": "Kumar", 
        "givenName": "Challa S.S.R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-52780-1_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-52779-5", 
        "978-3-662-52780-1"
      ], 
      "name": "Magnetic Characterization Techniques for Nanomaterials", 
      "type": "Book"
    }, 
    "keywords": [
      "reflectivity measurements", 
      "neutron reflectivity measurements", 
      "neutron reflectivity", 
      "thin films", 
      "ray reflectivity measurements", 
      "average magnetic moment", 
      "ray reflectivity study", 
      "powerful nondestructive technique", 
      "wave nature", 
      "cold neutrons", 
      "atomic number", 
      "reflectivity technique", 
      "neutron reflectivity data", 
      "magnetic moment", 
      "polarization analysis", 
      "reflectivity study", 
      "nanostructured films", 
      "spin arrangement", 
      "function of depth", 
      "neutron reflectivity technique", 
      "basic formalism", 
      "reflectivity", 
      "reflectivity data", 
      "neutrons", 
      "magnetic ordering", 
      "top surface", 
      "absolute units", 
      "complementary techniques", 
      "films", 
      "nondestructive technique", 
      "structural information", 
      "measurements", 
      "liquid form", 
      "biological materials", 
      "same elements", 
      "nature of interactions", 
      "rays", 
      "type of system", 
      "materials", 
      "close values", 
      "formalism", 
      "recent examples", 
      "roughness", 
      "isotopes", 
      "analysis techniques", 
      "thickness", 
      "technique", 
      "moment", 
      "density", 
      "interface", 
      "detail", 
      "surface", 
      "matter", 
      "morphological studies", 
      "ordering", 
      "capability", 
      "theory", 
      "interaction", 
      "elements", 
      "depth", 
      "merits", 
      "nature", 
      "arrangement", 
      "system", 
      "comparison", 
      "units", 
      "function", 
      "values", 
      "example", 
      "study", 
      "contrast", 
      "information", 
      "analysis", 
      "types", 
      "data", 
      "form", 
      "number", 
      "chapter", 
      "plane spin arrangement"
    ], 
    "name": "Neutron Reflectivity to Characterize Nanostructured Films", 
    "pagination": "339-373", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085057724"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-52780-1_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-52780-1_10", 
      "https://app.dimensions.ai/details/publication/pub.1085057724"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_104.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-52780-1_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      23 PREDICATES      107 URIs      96 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-52780-1_10 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 anzsrc-for:03
4 anzsrc-for:0306
5 anzsrc-for:09
6 anzsrc-for:0912
7 schema:author Ne78b304fb0274453bdeb8cae26a330fd
8 schema:datePublished 2016-08-13
9 schema:datePublishedReg 2016-08-13
10 schema:description Neutron reflectivity is a powerful nondestructive technique to characterize thin films and nanostructured materials. This technique works equally well for various types of systems like organic, inorganic, and biological materials both in solid and liquid forms. Neutron reflectivity measurements provide information regarding the thickness and density of a thin film as a function of depth and also about the roughness of the top surface and buried interfaces. In comparison with x-ray reflectivity study, the neutron reflectivity measurements provide much improved contrast for elements with close values of atomic numbers, even for isotopes of same element. Furthermore, the detail of the in-plane spin arrangement can be obtained from polarization analysis. Neutron reflectivity is more than a complementary technique to x-ray reflectivity measurement for structural and morphological studies and is essential for the study of magnetic ordering due to its capability to measure the average magnetic moment in absolute units simultaneously with the structural information. In this chapter we discuss the theory of neutron reflectivity technique and illustrate the merit of this technique with some recent examples. We explain also the analysis techniques of neutron reflectivity data in detail. Although the nature of interaction of neutron with matter is different from that of x-ray, the basic formalism for reflectivity presented here utilizing the wave nature of thermal/cold neutrons remain valid for both measurements.
11 schema:editor Na294839754ef4871b02d2c3464703ff2
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N1db744ba5250483ebdd81fef0ac586be
16 schema:keywords absolute units
17 analysis
18 analysis techniques
19 arrangement
20 atomic number
21 average magnetic moment
22 basic formalism
23 biological materials
24 capability
25 chapter
26 close values
27 cold neutrons
28 comparison
29 complementary techniques
30 contrast
31 data
32 density
33 depth
34 detail
35 elements
36 example
37 films
38 form
39 formalism
40 function
41 function of depth
42 information
43 interaction
44 interface
45 isotopes
46 liquid form
47 magnetic moment
48 magnetic ordering
49 materials
50 matter
51 measurements
52 merits
53 moment
54 morphological studies
55 nanostructured films
56 nature
57 nature of interactions
58 neutron reflectivity
59 neutron reflectivity data
60 neutron reflectivity measurements
61 neutron reflectivity technique
62 neutrons
63 nondestructive technique
64 number
65 ordering
66 plane spin arrangement
67 polarization analysis
68 powerful nondestructive technique
69 ray reflectivity measurements
70 ray reflectivity study
71 rays
72 recent examples
73 reflectivity
74 reflectivity data
75 reflectivity measurements
76 reflectivity study
77 reflectivity technique
78 roughness
79 same elements
80 spin arrangement
81 structural information
82 study
83 surface
84 system
85 technique
86 theory
87 thickness
88 thin films
89 top surface
90 type of system
91 types
92 units
93 values
94 wave nature
95 schema:name Neutron Reflectivity to Characterize Nanostructured Films
96 schema:pagination 339-373
97 schema:productId N8b0377455ef74892889a9e31dbcedbf1
98 N9d544fd9de1e4ad8886a553b4bae2b0d
99 schema:publisher N6343a8532ab542d3872126139b62eb09
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085057724
101 https://doi.org/10.1007/978-3-662-52780-1_10
102 schema:sdDatePublished 2022-01-01T19:06
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Neae5bb39f9514a278168af5b3633ba36
105 schema:url https://doi.org/10.1007/978-3-662-52780-1_10
106 sgo:license sg:explorer/license/
107 sgo:sdDataset chapters
108 rdf:type schema:Chapter
109 N1db744ba5250483ebdd81fef0ac586be schema:isbn 978-3-662-52779-5
110 978-3-662-52780-1
111 schema:name Magnetic Characterization Techniques for Nanomaterials
112 rdf:type schema:Book
113 N6343a8532ab542d3872126139b62eb09 schema:name Springer Nature
114 rdf:type schema:Organisation
115 N7f86ed00e1c848218ba11614fc104c3f schema:familyName Kumar
116 schema:givenName Challa S.S.R.
117 rdf:type schema:Person
118 N8b0377455ef74892889a9e31dbcedbf1 schema:name doi
119 schema:value 10.1007/978-3-662-52780-1_10
120 rdf:type schema:PropertyValue
121 N97a50bab44554c33955db3d69e327c43 rdf:first sg:person.012365250614.28
122 rdf:rest N9a88a17dbce74606b7fa5039205af2f6
123 N9a88a17dbce74606b7fa5039205af2f6 rdf:first sg:person.0771136654.41
124 rdf:rest rdf:nil
125 N9d544fd9de1e4ad8886a553b4bae2b0d schema:name dimensions_id
126 schema:value pub.1085057724
127 rdf:type schema:PropertyValue
128 Na294839754ef4871b02d2c3464703ff2 rdf:first N7f86ed00e1c848218ba11614fc104c3f
129 rdf:rest rdf:nil
130 Ne78b304fb0274453bdeb8cae26a330fd rdf:first sg:person.01171475041.88
131 rdf:rest N97a50bab44554c33955db3d69e327c43
132 Neae5bb39f9514a278168af5b3633ba36 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
135 schema:name Physical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
138 schema:name Other Physical Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
141 schema:name Chemical Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
144 schema:name Physical Chemistry (incl. Structural)
145 rdf:type schema:DefinedTerm
146 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
147 schema:name Engineering
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
150 schema:name Materials Engineering
151 rdf:type schema:DefinedTerm
152 sg:person.01171475041.88 schema:affiliation grid-institutes:grid.473481.d
153 schema:familyName Gayen
154 schema:givenName Sirshendu
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171475041.88
156 rdf:type schema:Person
157 sg:person.012365250614.28 schema:affiliation grid-institutes:grid.473481.d
158 schema:familyName Sanyal
159 schema:givenName Milan K.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365250614.28
161 rdf:type schema:Person
162 sg:person.0771136654.41 schema:affiliation grid-institutes:grid.8993.b
163 schema:familyName Wolff
164 schema:givenName Max
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771136654.41
166 rdf:type schema:Person
167 grid-institutes:grid.473481.d schema:alternateName Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India
168 schema:name Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India
169 rdf:type schema:Organization
170 grid-institutes:grid.8993.b schema:alternateName Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120, Uppsala, Sweden
171 schema:name Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120, Uppsala, Sweden
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...