Neutron Reflectivity to Characterize Nanostructured Films View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-08-13

AUTHORS

Sirshendu Gayen , Milan K. Sanyal , Max Wolff

ABSTRACT

Neutron reflectivity is a powerful nondestructive technique to characterize thin films and nanostructured materials. This technique works equally well for various types of systems like organic, inorganic, and biological materials both in solid and liquid forms. Neutron reflectivity measurements provide information regarding the thickness and density of a thin film as a function of depth and also about the roughness of the top surface and buried interfaces. In comparison with x-ray reflectivity study, the neutron reflectivity measurements provide much improved contrast for elements with close values of atomic numbers, even for isotopes of same element. Furthermore, the detail of the in-plane spin arrangement can be obtained from polarization analysis. Neutron reflectivity is more than a complementary technique to x-ray reflectivity measurement for structural and morphological studies and is essential for the study of magnetic ordering due to its capability to measure the average magnetic moment in absolute units simultaneously with the structural information. In this chapter we discuss the theory of neutron reflectivity technique and illustrate the merit of this technique with some recent examples. We explain also the analysis techniques of neutron reflectivity data in detail. Although the nature of interaction of neutron with matter is different from that of x-ray, the basic formalism for reflectivity presented here utilizing the wave nature of thermal/cold neutrons remain valid for both measurements. More... »

PAGES

339-373

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10

DOI

http://dx.doi.org/10.1007/978-3-662-52780-1_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085057724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.473481.d", 
          "name": [
            "Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gayen", 
        "givenName": "Sirshendu", 
        "id": "sg:person.01171475041.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171475041.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.473481.d", 
          "name": [
            "Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanyal", 
        "givenName": "Milan K.", 
        "id": "sg:person.012365250614.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365250614.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120, Uppsala, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.8993.b", 
          "name": [
            "Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolff", 
        "givenName": "Max", 
        "id": "sg:person.0771136654.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771136654.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-08-13", 
    "datePublishedReg": "2016-08-13", 
    "description": "Neutron reflectivity is a powerful nondestructive technique to characterize thin films and nanostructured materials. This technique works equally well for various types of systems like organic, inorganic, and biological materials both in solid and liquid forms. Neutron reflectivity measurements provide information regarding the thickness and density of a thin film as a function of depth and also about the roughness of the top surface and buried interfaces. In comparison with x-ray reflectivity study, the neutron reflectivity measurements provide much improved contrast for elements with close values of atomic numbers, even for isotopes of same element. Furthermore, the detail of the in-plane spin arrangement can be obtained from polarization analysis. Neutron reflectivity is more than a complementary technique to x-ray reflectivity measurement for structural and morphological studies and is essential for the study of magnetic ordering due to its capability to measure the average magnetic moment in absolute units simultaneously with the structural information. In this chapter we discuss the theory of neutron reflectivity technique and illustrate the merit of this technique with some recent examples. We explain also the analysis techniques of neutron reflectivity data in detail. Although the nature of interaction of neutron with matter is different from that of x-ray, the basic formalism for reflectivity presented here utilizing the wave nature of thermal/cold neutrons remain valid for both measurements.", 
    "editor": [
      {
        "familyName": "Kumar", 
        "givenName": "Challa S.S.R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-52780-1_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-52779-5", 
        "978-3-662-52780-1"
      ], 
      "name": "Magnetic Characterization Techniques for Nanomaterials", 
      "type": "Book"
    }, 
    "keywords": [
      "reflectivity measurements", 
      "neutron reflectivity measurements", 
      "neutron reflectivity", 
      "thin films", 
      "ray reflectivity measurements", 
      "average magnetic moment", 
      "powerful nondestructive technique", 
      "ray reflectivity study", 
      "neutron reflectivity data", 
      "cold neutrons", 
      "wave nature", 
      "atomic number", 
      "magnetic moment", 
      "polarization analysis", 
      "spin arrangement", 
      "reflectivity technique", 
      "magnetic ordering", 
      "nanostructured films", 
      "reflectivity study", 
      "neutron reflectivity technique", 
      "function of depth", 
      "reflectivity", 
      "basic formalism", 
      "reflectivity data", 
      "neutrons", 
      "absolute units", 
      "films", 
      "top surface", 
      "complementary techniques", 
      "type of system", 
      "nondestructive technique", 
      "measurements", 
      "structural information", 
      "nature of interactions", 
      "rays", 
      "same elements", 
      "analysis techniques", 
      "liquid form", 
      "formalism", 
      "biological materials", 
      "close values", 
      "materials", 
      "isotopes", 
      "roughness", 
      "ordering", 
      "theory", 
      "technique", 
      "recent examples", 
      "density", 
      "moment", 
      "detail", 
      "morphological studies", 
      "thickness", 
      "interface", 
      "matter", 
      "surface", 
      "capability", 
      "nature", 
      "interaction", 
      "elements", 
      "merits", 
      "depth", 
      "function", 
      "system", 
      "arrangement", 
      "number", 
      "information", 
      "form", 
      "comparison", 
      "example", 
      "values", 
      "units", 
      "contrast", 
      "analysis", 
      "study", 
      "data", 
      "chapter", 
      "types"
    ], 
    "name": "Neutron Reflectivity to Characterize Nanostructured Films", 
    "pagination": "339-373", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085057724"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-52780-1_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-52780-1_10", 
      "https://app.dimensions.ai/details/publication/pub.1085057724"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_177.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-52780-1_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-52780-1_10'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      23 PREDICATES      106 URIs      95 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-52780-1_10 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 anzsrc-for:03
4 anzsrc-for:0306
5 anzsrc-for:09
6 anzsrc-for:0912
7 schema:author Nb4bb57c264174c6e940aafb911bdf8ed
8 schema:datePublished 2016-08-13
9 schema:datePublishedReg 2016-08-13
10 schema:description Neutron reflectivity is a powerful nondestructive technique to characterize thin films and nanostructured materials. This technique works equally well for various types of systems like organic, inorganic, and biological materials both in solid and liquid forms. Neutron reflectivity measurements provide information regarding the thickness and density of a thin film as a function of depth and also about the roughness of the top surface and buried interfaces. In comparison with x-ray reflectivity study, the neutron reflectivity measurements provide much improved contrast for elements with close values of atomic numbers, even for isotopes of same element. Furthermore, the detail of the in-plane spin arrangement can be obtained from polarization analysis. Neutron reflectivity is more than a complementary technique to x-ray reflectivity measurement for structural and morphological studies and is essential for the study of magnetic ordering due to its capability to measure the average magnetic moment in absolute units simultaneously with the structural information. In this chapter we discuss the theory of neutron reflectivity technique and illustrate the merit of this technique with some recent examples. We explain also the analysis techniques of neutron reflectivity data in detail. Although the nature of interaction of neutron with matter is different from that of x-ray, the basic formalism for reflectivity presented here utilizing the wave nature of thermal/cold neutrons remain valid for both measurements.
11 schema:editor Nc53e60d51f3746bf9fdf6d225bd8438a
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nc05d52bcd39b42e09448ce6e88022ccc
16 schema:keywords absolute units
17 analysis
18 analysis techniques
19 arrangement
20 atomic number
21 average magnetic moment
22 basic formalism
23 biological materials
24 capability
25 chapter
26 close values
27 cold neutrons
28 comparison
29 complementary techniques
30 contrast
31 data
32 density
33 depth
34 detail
35 elements
36 example
37 films
38 form
39 formalism
40 function
41 function of depth
42 information
43 interaction
44 interface
45 isotopes
46 liquid form
47 magnetic moment
48 magnetic ordering
49 materials
50 matter
51 measurements
52 merits
53 moment
54 morphological studies
55 nanostructured films
56 nature
57 nature of interactions
58 neutron reflectivity
59 neutron reflectivity data
60 neutron reflectivity measurements
61 neutron reflectivity technique
62 neutrons
63 nondestructive technique
64 number
65 ordering
66 polarization analysis
67 powerful nondestructive technique
68 ray reflectivity measurements
69 ray reflectivity study
70 rays
71 recent examples
72 reflectivity
73 reflectivity data
74 reflectivity measurements
75 reflectivity study
76 reflectivity technique
77 roughness
78 same elements
79 spin arrangement
80 structural information
81 study
82 surface
83 system
84 technique
85 theory
86 thickness
87 thin films
88 top surface
89 type of system
90 types
91 units
92 values
93 wave nature
94 schema:name Neutron Reflectivity to Characterize Nanostructured Films
95 schema:pagination 339-373
96 schema:productId Na12457ab16544d609a98218ffcad998f
97 Neb7a6eb8fbf34c859929f18e617d15a2
98 schema:publisher N2ae69d865e514ef4b420d5936fca74f6
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085057724
100 https://doi.org/10.1007/978-3-662-52780-1_10
101 schema:sdDatePublished 2022-05-20T07:42
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Ndcaa0debbbb84ebb943565f7f262ab07
104 schema:url https://doi.org/10.1007/978-3-662-52780-1_10
105 sgo:license sg:explorer/license/
106 sgo:sdDataset chapters
107 rdf:type schema:Chapter
108 N2ae69d865e514ef4b420d5936fca74f6 schema:name Springer Nature
109 rdf:type schema:Organisation
110 N5084d17f18f44573a920225f82c864fb rdf:first sg:person.012365250614.28
111 rdf:rest N9968038c0dda44f09185cf74675c1def
112 N5a0f82fdbc314c01944d2ea318bff177 schema:familyName Kumar
113 schema:givenName Challa S.S.R.
114 rdf:type schema:Person
115 N9968038c0dda44f09185cf74675c1def rdf:first sg:person.0771136654.41
116 rdf:rest rdf:nil
117 Na12457ab16544d609a98218ffcad998f schema:name dimensions_id
118 schema:value pub.1085057724
119 rdf:type schema:PropertyValue
120 Nb4bb57c264174c6e940aafb911bdf8ed rdf:first sg:person.01171475041.88
121 rdf:rest N5084d17f18f44573a920225f82c864fb
122 Nc05d52bcd39b42e09448ce6e88022ccc schema:isbn 978-3-662-52779-5
123 978-3-662-52780-1
124 schema:name Magnetic Characterization Techniques for Nanomaterials
125 rdf:type schema:Book
126 Nc53e60d51f3746bf9fdf6d225bd8438a rdf:first N5a0f82fdbc314c01944d2ea318bff177
127 rdf:rest rdf:nil
128 Ndcaa0debbbb84ebb943565f7f262ab07 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Neb7a6eb8fbf34c859929f18e617d15a2 schema:name doi
131 schema:value 10.1007/978-3-662-52780-1_10
132 rdf:type schema:PropertyValue
133 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
137 schema:name Other Physical Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
140 schema:name Chemical Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
143 schema:name Physical Chemistry (incl. Structural)
144 rdf:type schema:DefinedTerm
145 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
146 schema:name Engineering
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
149 schema:name Materials Engineering
150 rdf:type schema:DefinedTerm
151 sg:person.01171475041.88 schema:affiliation grid-institutes:grid.473481.d
152 schema:familyName Gayen
153 schema:givenName Sirshendu
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171475041.88
155 rdf:type schema:Person
156 sg:person.012365250614.28 schema:affiliation grid-institutes:grid.473481.d
157 schema:familyName Sanyal
158 schema:givenName Milan K.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365250614.28
160 rdf:type schema:Person
161 sg:person.0771136654.41 schema:affiliation grid-institutes:grid.8993.b
162 schema:familyName Wolff
163 schema:givenName Max
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771136654.41
165 rdf:type schema:Person
166 grid-institutes:grid.473481.d schema:alternateName Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India
167 schema:name Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, 700 064, Kolkata, India
168 rdf:type schema:Organization
169 grid-institutes:grid.8993.b schema:alternateName Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120, Uppsala, Sweden
170 schema:name Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-75120, Uppsala, Sweden
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...