@prefix ns1: . @prefix ns2: . @prefix rdf: . @prefix rdfs: . @prefix xml: . @prefix xsd: . a ns1:Chapter ; ns1:about , ; ns1:author ( ) ; ns1:datePublished "2015-06-20" ; ns1:datePublishedReg "2015-06-20" ; ns1:description """Given k collections of 2SAT clauses on the same set of variables V, can we find one assignment that satisfies a large fraction of clauses from each collection? We consider such simultaneous constraint satisfaction problems, and design the first nontrivial approximation algorithms in this context.Our main result is that for every CSP F\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal {F}}$$\\end{document}, for , there is a polynomial time constant factor Pareto approximation algorithm for k simultaneous Max-F\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal {F}}$$\\end{document}-CSP instances. Our methods are quite general, and we also use them to give an improved approximation factor for simultaneous Max-w-SAT (for ). In contrast, for k=ω(logn)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$k = \\omega (\\log n)$$\\end{document}, no nonzero approximation factor for k simultaneous Max-F\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal {F}}$$\\end{document}-CSP instances can be achieved in polynomial time (assuming the Exponential Time Hypothesis).These problems are a natural meeting point for the theory of constraint satisfaction problems and multiobjective optimization. We also suggest a number of interesting directions for future research.""" ; ns1:editor ( [ a ns1:Person ; ns1:familyName "Halldórsson" ; ns1:givenName "Magnús M." ] [ a ns1:Person ; ns1:familyName "Iwama" ; ns1:givenName "Kazuo" ] [ a ns1:Person ; ns1:familyName "Kobayashi" ; ns1:givenName "Naoki" ] [ a ns1:Person ; ns1:familyName "Speckmann" ; ns1:givenName "Bettina" ] ) ; ns1:genre "chapter" ; ns1:isAccessibleForFree true ; ns1:isPartOf [ a ns1:Book ; ns1:isbn "978-3-662-47671-0", "978-3-662-47672-7" ; ns1:name "Automata, Languages, and Programming" ] ; ns1:keywords "CSP", "CSP instances", "algorithm", "approximation", "approximation algorithm", "approximation factor", "assignment", "clauses", "collection", "constraint satisfaction problems", "context", "contrast", "direction", "factors", "first nontrivial approximation algorithm", "fraction", "future research", "improved approximation factor", "instances", "interesting directions", "large fraction", "main results", "max", "meeting point", "method", "multiobjective optimization", "natural meeting point", "nontrivial approximation algorithm", "number", "optimization", "point", "polynomial time", "problem", "research", "results", "same set", "satisfaction problems", "set", "simultaneous approximation", "theory", "time", "variable v" ; ns1:name "Simultaneous Approximation of Constraint Satisfaction Problems" ; ns1:pagination "193-205" ; ns1:productId [ a ns1:PropertyValue ; ns1:name "dimensions_id" ; ns1:value "pub.1049324180" ], [ a ns1:PropertyValue ; ns1:name "doi" ; ns1:value "10.1007/978-3-662-47672-7_16" ] ; ns1:publisher [ a ns1:Organisation ; ns1:name "Springer Nature" ] ; ns1:sameAs , ; ns1:sdDatePublished "2022-08-04T17:16" ; ns1:sdLicense "https://scigraph.springernature.com/explorer/license/" ; ns1:sdPublisher [ a ns1:Organization ; ns1:name "Springer Nature - SN SciGraph project" ] ; ns1:url "https://doi.org/10.1007/978-3-662-47672-7_16" ; ns2:license ; ns2:sdDataset "chapters" . a ns1:DefinedTerm ; ns1:inDefinedTermSet ; ns1:name "Mathematical Sciences" . a ns1:DefinedTerm ; ns1:inDefinedTermSet ; ns1:name "Numerical and Computational Mathematics" . a ns1:Person ; ns1:affiliation ; ns1:familyName "Bhangale" ; ns1:givenName "Amey" ; ns1:sameAs . a ns1:Person ; ns1:affiliation ; ns1:familyName "Kopparty" ; ns1:givenName "Swastik" ; ns1:sameAs . a ns1:Person ; ns1:affiliation ; ns1:familyName "Sachdeva" ; ns1:givenName "Sushant" ; ns1:sameAs . a ns1:Organization ; ns1:alternateName "Department of Computer Science, Yale University, New Haven, USA" ; ns1:name "Department of Computer Science, Yale University, New Haven, USA" . a ns1:Organization ; ns1:alternateName "Department of Computer Science, Rutgers University, New Brunswick, USA", "Department of Mathematics and Department of Computer Science, Rutgers University, New Brunswick, USA" ; ns1:name "Department of Computer Science, Rutgers University, New Brunswick, USA", "Department of Mathematics and Department of Computer Science, Rutgers University, New Brunswick, USA" .