Analyzing Cargo Loss Severity of Electronics Products with Decision Tree View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Mu-Chen Chen , Pei-Ju Wu , Chih-Kai Tsau

ABSTRACT

Supply chain risk management has been an essential issue in recent years. Cargo loss in supply chain and logistics activities has been the major cause of delays and supply chain disruption; however, rarely do studies provide comprehensive studies focusing on cargo loss analysis and prevention in various modes of transportation. Hence, this study aims to investigate the cargo loss severity of an electronics company. Decision tree analysis is adapted to develop classification models for cargo loss severity of electronics products. The empirical results with the classification rules can be utilized as a cargo loss prediction tool to help managers to make an effective plan on cargo loss prevention. More... »

PAGES

477-484

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-47200-2_51

DOI

http://dx.doi.org/10.1007/978-3-662-47200-2_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008965466


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Business and Management", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Transportation and Logistics Management, National Chiao Tung University, 4F, No. 118, Sec. 1, Chung-Hsiao W. Rd., Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Department of Transportation and Logistics Management, National Chiao Tung University, 4F, No. 118, Sec. 1, Chung-Hsiao W. Rd., Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mu-Chen", 
        "id": "sg:person.012033065401.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065401.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Transportation Technology and Management, Feng Chia University, No.100, Wenhwa Road, Seatwen, Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411298.7", 
          "name": [
            "Department of Transportation Technology and Management, Feng Chia University, No.100, Wenhwa Road, Seatwen, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Pei-Ju", 
        "id": "sg:person.013276547461.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276547461.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "2F., No.3, Ln. 31, Yifang St., Beitou Dist., 112, Taipei, Taiwan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "2F., No.3, Ln. 31, Yifang St., Beitou Dist., 112, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsau", 
        "givenName": "Chih-Kai", 
        "id": "sg:person.016264451461.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016264451461.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Supply chain risk management has been an essential issue in recent years. Cargo loss in supply chain and logistics activities has been the major cause of delays and supply chain disruption; however, rarely do studies provide comprehensive studies focusing on cargo loss analysis and prevention in various modes of transportation. Hence, this study aims to investigate the cargo loss severity of an electronics company. Decision tree analysis is adapted to develop classification models for cargo loss severity of electronics products. The empirical results with the classification rules can be utilized as a cargo loss prediction tool to help managers to make an effective plan on cargo loss prevention.", 
    "editor": [
      {
        "familyName": "Gen", 
        "givenName": "Mitsuo", 
        "type": "Person"
      }, 
      {
        "familyName": "Kim", 
        "givenName": "Kuinam J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Huang", 
        "givenName": "Xiaoxia", 
        "type": "Person"
      }, 
      {
        "familyName": "Hiroshi", 
        "givenName": "Yabe", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-47200-2_51", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-47199-9", 
        "978-3-662-47200-2"
      ], 
      "name": "Industrial Engineering, Management Science and Applications 2015", 
      "type": "Book"
    }, 
    "keywords": [
      "supply chain risk management", 
      "loss severity", 
      "chain risk management", 
      "supply chain disruptions", 
      "chain disruptions", 
      "supply chain", 
      "logistics activities", 
      "risk management", 
      "electronics companies", 
      "empirical results", 
      "cargo loss", 
      "electronic products", 
      "mode of transportation", 
      "decision tree analysis", 
      "loss prevention", 
      "effective plan", 
      "managers", 
      "companies", 
      "essential issue", 
      "management", 
      "products", 
      "recent years", 
      "chain", 
      "issues", 
      "plan", 
      "decision tree", 
      "transportation", 
      "study", 
      "comprehensive study", 
      "rules", 
      "model", 
      "analysis", 
      "tool", 
      "tree analysis", 
      "classification model", 
      "activity", 
      "results", 
      "disruption", 
      "classification rules", 
      "years", 
      "mode", 
      "loss", 
      "cause", 
      "delay", 
      "loss analysis", 
      "major cause", 
      "prevention", 
      "prediction tools", 
      "severity", 
      "trees"
    ], 
    "name": "Analyzing Cargo Loss Severity of Electronics Products with Decision Tree", 
    "pagination": "477-484", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008965466"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-47200-2_51"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-47200-2_51", 
      "https://app.dimensions.ai/details/publication/pub.1008965466"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_288.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-47200-2_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-47200-2_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-47200-2_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-47200-2_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-47200-2_51'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-47200-2_51 schema:about anzsrc-for:15
2 anzsrc-for:1503
3 schema:author N643e4e4188cd4d11a9d1713617774d17
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description Supply chain risk management has been an essential issue in recent years. Cargo loss in supply chain and logistics activities has been the major cause of delays and supply chain disruption; however, rarely do studies provide comprehensive studies focusing on cargo loss analysis and prevention in various modes of transportation. Hence, this study aims to investigate the cargo loss severity of an electronics company. Decision tree analysis is adapted to develop classification models for cargo loss severity of electronics products. The empirical results with the classification rules can be utilized as a cargo loss prediction tool to help managers to make an effective plan on cargo loss prevention.
7 schema:editor Ndb275a8e17894a33a6be1ac333c166c2
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc93091f1aa2c4b49b04daf84c91851fc
12 schema:keywords activity
13 analysis
14 cargo loss
15 cause
16 chain
17 chain disruptions
18 chain risk management
19 classification model
20 classification rules
21 companies
22 comprehensive study
23 decision tree
24 decision tree analysis
25 delay
26 disruption
27 effective plan
28 electronic products
29 electronics companies
30 empirical results
31 essential issue
32 issues
33 logistics activities
34 loss
35 loss analysis
36 loss prevention
37 loss severity
38 major cause
39 management
40 managers
41 mode
42 mode of transportation
43 model
44 plan
45 prediction tools
46 prevention
47 products
48 recent years
49 results
50 risk management
51 rules
52 severity
53 study
54 supply chain
55 supply chain disruptions
56 supply chain risk management
57 tool
58 transportation
59 tree analysis
60 trees
61 years
62 schema:name Analyzing Cargo Loss Severity of Electronics Products with Decision Tree
63 schema:pagination 477-484
64 schema:productId Nbae9987d0aac497bbf109eee34ac9d69
65 Nde77fb473e8c4e23bf4b6867709d7b21
66 schema:publisher N5393e73889814a9aa9d3f4b330628814
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008965466
68 https://doi.org/10.1007/978-3-662-47200-2_51
69 schema:sdDatePublished 2022-05-20T07:45
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N94270587a31849a082bd89f2350a99ba
72 schema:url https://doi.org/10.1007/978-3-662-47200-2_51
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N2f8ad37fe6bc4f6d8284d2259e92808c rdf:first Nb6d80f27efb34647a7bc202ae3498c2d
77 rdf:rest rdf:nil
78 N3c39e79ff47447818e9bb99e4addc1a5 schema:familyName Huang
79 schema:givenName Xiaoxia
80 rdf:type schema:Person
81 N5393e73889814a9aa9d3f4b330628814 schema:name Springer Nature
82 rdf:type schema:Organisation
83 N5467eeece05d411c8b4416317e9633fa schema:familyName Gen
84 schema:givenName Mitsuo
85 rdf:type schema:Person
86 N643e4e4188cd4d11a9d1713617774d17 rdf:first sg:person.012033065401.35
87 rdf:rest N8287b2efd31e434f8ffbbd6d3b39f95d
88 N6b68712da6874941b93ced8ad897a38d rdf:first sg:person.016264451461.49
89 rdf:rest rdf:nil
90 N81da9022fba34df39022f3f0f5e7f5d2 rdf:first N3c39e79ff47447818e9bb99e4addc1a5
91 rdf:rest N2f8ad37fe6bc4f6d8284d2259e92808c
92 N8287b2efd31e434f8ffbbd6d3b39f95d rdf:first sg:person.013276547461.46
93 rdf:rest N6b68712da6874941b93ced8ad897a38d
94 N9413c89f5b254f298ef30fc100ecd1e8 rdf:first Nc3aebd34ba1540dbbbf1407ab67b79d4
95 rdf:rest N81da9022fba34df39022f3f0f5e7f5d2
96 N94270587a31849a082bd89f2350a99ba schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nb6d80f27efb34647a7bc202ae3498c2d schema:familyName Hiroshi
99 schema:givenName Yabe
100 rdf:type schema:Person
101 Nbae9987d0aac497bbf109eee34ac9d69 schema:name dimensions_id
102 schema:value pub.1008965466
103 rdf:type schema:PropertyValue
104 Nc3aebd34ba1540dbbbf1407ab67b79d4 schema:familyName Kim
105 schema:givenName Kuinam J.
106 rdf:type schema:Person
107 Nc93091f1aa2c4b49b04daf84c91851fc schema:isbn 978-3-662-47199-9
108 978-3-662-47200-2
109 schema:name Industrial Engineering, Management Science and Applications 2015
110 rdf:type schema:Book
111 Ndb275a8e17894a33a6be1ac333c166c2 rdf:first N5467eeece05d411c8b4416317e9633fa
112 rdf:rest N9413c89f5b254f298ef30fc100ecd1e8
113 Nde77fb473e8c4e23bf4b6867709d7b21 schema:name doi
114 schema:value 10.1007/978-3-662-47200-2_51
115 rdf:type schema:PropertyValue
116 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
117 schema:name Commerce, Management, Tourism and Services
118 rdf:type schema:DefinedTerm
119 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
120 schema:name Business and Management
121 rdf:type schema:DefinedTerm
122 sg:person.012033065401.35 schema:affiliation grid-institutes:grid.260539.b
123 schema:familyName Chen
124 schema:givenName Mu-Chen
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033065401.35
126 rdf:type schema:Person
127 sg:person.013276547461.46 schema:affiliation grid-institutes:grid.411298.7
128 schema:familyName Wu
129 schema:givenName Pei-Ju
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276547461.46
131 rdf:type schema:Person
132 sg:person.016264451461.49 schema:affiliation grid-institutes:None
133 schema:familyName Tsau
134 schema:givenName Chih-Kai
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016264451461.49
136 rdf:type schema:Person
137 grid-institutes:None schema:alternateName 2F., No.3, Ln. 31, Yifang St., Beitou Dist., 112, Taipei, Taiwan
138 schema:name 2F., No.3, Ln. 31, Yifang St., Beitou Dist., 112, Taipei, Taiwan
139 rdf:type schema:Organization
140 grid-institutes:grid.260539.b schema:alternateName Department of Transportation and Logistics Management, National Chiao Tung University, 4F, No. 118, Sec. 1, Chung-Hsiao W. Rd., Taipei, Taiwan
141 schema:name Department of Transportation and Logistics Management, National Chiao Tung University, 4F, No. 118, Sec. 1, Chung-Hsiao W. Rd., Taipei, Taiwan
142 rdf:type schema:Organization
143 grid-institutes:grid.411298.7 schema:alternateName Department of Transportation Technology and Management, Feng Chia University, No.100, Wenhwa Road, Seatwen, Taichung, Taiwan
144 schema:name Department of Transportation Technology and Management, Feng Chia University, No.100, Wenhwa Road, Seatwen, Taichung, Taiwan
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...