2015-04-14
AUTHORSAlexandre Duc , Florian Tramèr , Serge Vaudenay
ABSTRACTThe Learning With Error problem (LWE) is becoming more and more used in cryptography, for instance, in the design of some fully homomorphic encryption schemes. It is thus of primordial importance to find the best algorithms that might solve this problem so that concrete parameters can be proposed. The BKW algorithm was proposed by Blum et al. as an algorithm to solve the Learning Parity with Noise problem (LPN), a subproblem of LWE. This algorithm was then adapted to LWE by Albrecht et al.In this paper, we improve the algorithm proposed by Albrecht et al. by using multidimensional Fourier transforms. Our algorithm is, to the best of our knowledge, the fastest LWE solving algorithm. Compared to the work of Albrecht et al. we greatly simplify the analysis, getting rid of integrals which were hard to evaluate in the final complexity. We also remove some heuristics on rounded Gaussians. Some of our results on rounded Gaussians might be of independent interest. Moreover, we also analyze algorithms solving LWE with discrete Gaussian noise.Finally, we apply the same algorithm to the Learning With Rounding problem (LWR) for prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}, a deterministic counterpart to LWE. This problem is getting more and more attention and is used, for instance, to design pseudorandom functions. To the best of our knowledge, our algorithm is the first algorithm applied directly to LWR. Furthermore, the analysis of LWR contains some technical results of independent interest. More... »
PAGES173-202
Advances in Cryptology -- EUROCRYPT 2015
ISBN
978-3-662-46799-2
978-3-662-46800-5
http://scigraph.springernature.com/pub.10.1007/978-3-662-46800-5_8
DOIhttp://dx.doi.org/10.1007/978-3-662-46800-5_8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1016645010
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "EPFL, 1015, Lausanne, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5333.6",
"name": [
"EPFL, 1015, Lausanne, Switzerland"
],
"type": "Organization"
},
"familyName": "Duc",
"givenName": "Alexandre",
"id": "sg:person.013530063017.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530063017.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "EPFL, 1015, Lausanne, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5333.6",
"name": [
"EPFL, 1015, Lausanne, Switzerland"
],
"type": "Organization"
},
"familyName": "Tram\u00e8r",
"givenName": "Florian",
"id": "sg:person.011125325553.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125325553.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "EPFL, 1015, Lausanne, Switzerland",
"id": "http://www.grid.ac/institutes/grid.5333.6",
"name": [
"EPFL, 1015, Lausanne, Switzerland"
],
"type": "Organization"
},
"familyName": "Vaudenay",
"givenName": "Serge",
"id": "sg:person.01353240467.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353240467.39"
],
"type": "Person"
}
],
"datePublished": "2015-04-14",
"datePublishedReg": "2015-04-14",
"description": "The Learning With Error problem (LWE) is becoming more and more used in cryptography, for instance, in the design of some fully homomorphic encryption schemes. It is thus of primordial importance to find the best algorithms that might solve this problem so that concrete parameters can be proposed. The BKW algorithm was proposed by Blum et al. as an algorithm to solve the Learning Parity with Noise problem (LPN), a subproblem of LWE. This algorithm was then adapted to LWE by Albrecht et al.In this paper, we improve the algorithm proposed by Albrecht et al. by using multidimensional Fourier transforms. Our algorithm is, to the best of our knowledge, the fastest LWE solving algorithm. Compared to the work of Albrecht et al. we greatly simplify the analysis, getting rid of integrals which were hard to evaluate in the final complexity. We also remove some heuristics on rounded Gaussians. Some of our results on rounded Gaussians might be of independent interest. Moreover, we also analyze algorithms solving LWE with discrete Gaussian noise.Finally, we apply the same algorithm to the Learning With Rounding problem\u00a0(LWR) for prime \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$q$$\\end{document}, a deterministic counterpart to LWE. This problem is getting more and more attention and is used, for instance, to design pseudorandom functions. To the best of our knowledge, our algorithm is the first algorithm applied directly to LWR. Furthermore, the analysis of LWR contains some technical results of independent interest.",
"editor": [
{
"familyName": "Oswald",
"givenName": "Elisabeth",
"type": "Person"
},
{
"familyName": "Fischlin",
"givenName": "Marc",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-662-46800-5_8",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-662-46799-2",
"978-3-662-46800-5"
],
"name": "Advances in Cryptology -- EUROCRYPT 2015",
"type": "Book"
},
"keywords": [
"best algorithm",
"Albrecht et al",
"homomorphic encryption scheme",
"encryption scheme",
"Learning Parity",
"independent interest",
"pseudorandom functions",
"first algorithm",
"rounding problem",
"Blum et al",
"LWE",
"same algorithm",
"multidimensional Fourier transform",
"BKW algorithm",
"algorithm",
"error problem",
"Gaussian noise",
"learning",
"concrete parameters",
"deterministic counterpart",
"cryptography",
"heuristics",
"instances",
"noise problem",
"technical results",
"subproblems",
"more attention",
"Gaussian",
"final complexity",
"complexity",
"scheme",
"knowledge",
"et al",
"transform",
"noise",
"design",
"interest",
"primordial importance",
"work",
"results",
"attention",
"LWR",
"analysis",
"parameters",
"Fourier transform",
"function",
"importance",
"counterparts",
"al",
"integrals",
"parity",
"problem",
"paper"
],
"name": "Better Algorithms for LWE and LWR",
"pagination": "173-202",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1016645010"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-662-46800-5_8"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-662-46800-5_8",
"https://app.dimensions.ai/details/publication/pub.1016645010"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_198.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-662-46800-5_8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-46800-5_8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-46800-5_8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-46800-5_8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-46800-5_8'
This table displays all metadata directly associated to this object as RDF triples.
132 TRIPLES
23 PREDICATES
78 URIs
71 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-662-46800-5_8 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Nb99069b965b6420e9e83214c3e7d3f4c |
4 | ″ | schema:datePublished | 2015-04-14 |
5 | ″ | schema:datePublishedReg | 2015-04-14 |
6 | ″ | schema:description | The Learning With Error problem (LWE) is becoming more and more used in cryptography, for instance, in the design of some fully homomorphic encryption schemes. It is thus of primordial importance to find the best algorithms that might solve this problem so that concrete parameters can be proposed. The BKW algorithm was proposed by Blum et al. as an algorithm to solve the Learning Parity with Noise problem (LPN), a subproblem of LWE. This algorithm was then adapted to LWE by Albrecht et al.In this paper, we improve the algorithm proposed by Albrecht et al. by using multidimensional Fourier transforms. Our algorithm is, to the best of our knowledge, the fastest LWE solving algorithm. Compared to the work of Albrecht et al. we greatly simplify the analysis, getting rid of integrals which were hard to evaluate in the final complexity. We also remove some heuristics on rounded Gaussians. Some of our results on rounded Gaussians might be of independent interest. Moreover, we also analyze algorithms solving LWE with discrete Gaussian noise.Finally, we apply the same algorithm to the Learning With Rounding problem (LWR) for prime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}, a deterministic counterpart to LWE. This problem is getting more and more attention and is used, for instance, to design pseudorandom functions. To the best of our knowledge, our algorithm is the first algorithm applied directly to LWR. Furthermore, the analysis of LWR contains some technical results of independent interest. |
7 | ″ | schema:editor | Ndb8e0dd791d1424986f76513ce5556f3 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Nef2faf174c63487c806efb4f57d3fba2 |
12 | ″ | schema:keywords | Albrecht et al |
13 | ″ | ″ | BKW algorithm |
14 | ″ | ″ | Blum et al |
15 | ″ | ″ | Fourier transform |
16 | ″ | ″ | Gaussian |
17 | ″ | ″ | Gaussian noise |
18 | ″ | ″ | LWE |
19 | ″ | ″ | LWR |
20 | ″ | ″ | Learning Parity |
21 | ″ | ″ | al |
22 | ″ | ″ | algorithm |
23 | ″ | ″ | analysis |
24 | ″ | ″ | attention |
25 | ″ | ″ | best algorithm |
26 | ″ | ″ | complexity |
27 | ″ | ″ | concrete parameters |
28 | ″ | ″ | counterparts |
29 | ″ | ″ | cryptography |
30 | ″ | ″ | design |
31 | ″ | ″ | deterministic counterpart |
32 | ″ | ″ | encryption scheme |
33 | ″ | ″ | error problem |
34 | ″ | ″ | et al |
35 | ″ | ″ | final complexity |
36 | ″ | ″ | first algorithm |
37 | ″ | ″ | function |
38 | ″ | ″ | heuristics |
39 | ″ | ″ | homomorphic encryption scheme |
40 | ″ | ″ | importance |
41 | ″ | ″ | independent interest |
42 | ″ | ″ | instances |
43 | ″ | ″ | integrals |
44 | ″ | ″ | interest |
45 | ″ | ″ | knowledge |
46 | ″ | ″ | learning |
47 | ″ | ″ | more attention |
48 | ″ | ″ | multidimensional Fourier transform |
49 | ″ | ″ | noise |
50 | ″ | ″ | noise problem |
51 | ″ | ″ | paper |
52 | ″ | ″ | parameters |
53 | ″ | ″ | parity |
54 | ″ | ″ | primordial importance |
55 | ″ | ″ | problem |
56 | ″ | ″ | pseudorandom functions |
57 | ″ | ″ | results |
58 | ″ | ″ | rounding problem |
59 | ″ | ″ | same algorithm |
60 | ″ | ″ | scheme |
61 | ″ | ″ | subproblems |
62 | ″ | ″ | technical results |
63 | ″ | ″ | transform |
64 | ″ | ″ | work |
65 | ″ | schema:name | Better Algorithms for LWE and LWR |
66 | ″ | schema:pagination | 173-202 |
67 | ″ | schema:productId | Nbb7eefb1e7404921be29e7e31c76fe59 |
68 | ″ | ″ | Ndcd932753fa94c1590c07b15f66273a0 |
69 | ″ | schema:publisher | Nfc217946735a47a58c42422090a2f805 |
70 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016645010 |
71 | ″ | ″ | https://doi.org/10.1007/978-3-662-46800-5_8 |
72 | ″ | schema:sdDatePublished | 2022-05-10T10:40 |
73 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
74 | ″ | schema:sdPublisher | N453705f49222470ca51c32bf05ca6e5b |
75 | ″ | schema:url | https://doi.org/10.1007/978-3-662-46800-5_8 |
76 | ″ | sgo:license | sg:explorer/license/ |
77 | ″ | sgo:sdDataset | chapters |
78 | ″ | rdf:type | schema:Chapter |
79 | N21ba430f8522483bb17e2ee12a33bf5f | rdf:first | sg:person.011125325553.13 |
80 | ″ | rdf:rest | Nac8c455c42a14d06bc2da20f8677b2da |
81 | N29f24cb793cb40ba89b217560252bb15 | schema:familyName | Oswald |
82 | ″ | schema:givenName | Elisabeth |
83 | ″ | rdf:type | schema:Person |
84 | N453705f49222470ca51c32bf05ca6e5b | schema:name | Springer Nature - SN SciGraph project |
85 | ″ | rdf:type | schema:Organization |
86 | Nab3ac4f82cb44fcbb834ddbdacc87870 | schema:familyName | Fischlin |
87 | ″ | schema:givenName | Marc |
88 | ″ | rdf:type | schema:Person |
89 | Nac8c455c42a14d06bc2da20f8677b2da | rdf:first | sg:person.01353240467.39 |
90 | ″ | rdf:rest | rdf:nil |
91 | Nb99069b965b6420e9e83214c3e7d3f4c | rdf:first | sg:person.013530063017.09 |
92 | ″ | rdf:rest | N21ba430f8522483bb17e2ee12a33bf5f |
93 | Nbb7eefb1e7404921be29e7e31c76fe59 | schema:name | dimensions_id |
94 | ″ | schema:value | pub.1016645010 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | Nbc53b138b25b46c1b667c3803683e524 | rdf:first | Nab3ac4f82cb44fcbb834ddbdacc87870 |
97 | ″ | rdf:rest | rdf:nil |
98 | Ndb8e0dd791d1424986f76513ce5556f3 | rdf:first | N29f24cb793cb40ba89b217560252bb15 |
99 | ″ | rdf:rest | Nbc53b138b25b46c1b667c3803683e524 |
100 | Ndcd932753fa94c1590c07b15f66273a0 | schema:name | doi |
101 | ″ | schema:value | 10.1007/978-3-662-46800-5_8 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | Nef2faf174c63487c806efb4f57d3fba2 | schema:isbn | 978-3-662-46799-2 |
104 | ″ | ″ | 978-3-662-46800-5 |
105 | ″ | schema:name | Advances in Cryptology -- EUROCRYPT 2015 |
106 | ″ | rdf:type | schema:Book |
107 | Nfc217946735a47a58c42422090a2f805 | schema:name | Springer Nature |
108 | ″ | rdf:type | schema:Organisation |
109 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Information and Computing Sciences |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Artificial Intelligence and Image Processing |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | sg:person.011125325553.13 | schema:affiliation | grid-institutes:grid.5333.6 |
116 | ″ | schema:familyName | Tramèr |
117 | ″ | schema:givenName | Florian |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125325553.13 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.013530063017.09 | schema:affiliation | grid-institutes:grid.5333.6 |
121 | ″ | schema:familyName | Duc |
122 | ″ | schema:givenName | Alexandre |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530063017.09 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.01353240467.39 | schema:affiliation | grid-institutes:grid.5333.6 |
126 | ″ | schema:familyName | Vaudenay |
127 | ″ | schema:givenName | Serge |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353240467.39 |
129 | ″ | rdf:type | schema:Person |
130 | grid-institutes:grid.5333.6 | schema:alternateName | EPFL, 1015, Lausanne, Switzerland |
131 | ″ | schema:name | EPFL, 1015, Lausanne, Switzerland |
132 | ″ | rdf:type | schema:Organization |