Secure Physical Computation Using Disposable Circuits View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2015

AUTHORS

Ben A. Fisch , Daniel Freund , Moni Naor

ABSTRACT

In a secure physical computation, a set of parties each have physical inputs and jointly compute a function of their inputs in a way that reveals no information to any party except for the output of the function. Recent work in CRYPTO’14 presented examples of physical zero-knowledge proofs of physical properties, a special case of secure physical two-party computation in which one party has a physical input and the second party verifies a boolean function of that input. While the work suggested a general framework for modeling and analyzing physical zero-knowledge protocols, it did not provide a general theory of how to prove any physical property with zero-knowledge. This paper takes an orthogonal approach using disposable circuits (DC)—cheap hardware tokens that can be completely destroyed after a computation—an extension of the familiar tamper-proof token model. In the DC model, we demonstrate that two parties can compute any function of their physical inputs in a way that leaks at most 1 bit of additional information to either party. Moreover, our result generalizes to any multi-party physical computation. Formally, our protocols achieve unconditional UC-security with input-dependent abort. More... »

PAGES

182-198

Book

TITLE

Theory of Cryptography

ISBN

978-3-662-46493-9
978-3-662-46494-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-46494-6_9

DOI

http://dx.doi.org/10.1007/978-3-662-46494-6_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021002792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Columbia University, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Columbia University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fisch", 
        "givenName": "Ben A.", 
        "id": "sg:person.011321400203.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321400203.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Cornell University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freund", 
        "givenName": "Daniel", 
        "id": "sg:person.010210234715.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010210234715.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Weizmann Institute of Science, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naor", 
        "givenName": "Moni", 
        "id": "sg:person.07776170271.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776170271.83"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "In a secure physical computation, a set of parties each have physical inputs and jointly compute a function of their inputs in a way that reveals no information to any party except for the output of the function. Recent work in CRYPTO\u201914 presented examples of physical zero-knowledge proofs of physical properties, a special case of secure physical two-party computation in which one party has a physical input and the second party verifies a boolean function of that input. While the work suggested a general framework for modeling and analyzing physical zero-knowledge protocols, it did not provide a general theory of how to prove any physical property with zero-knowledge. This paper takes an orthogonal approach using disposable circuits (DC)\u2014cheap hardware tokens that can be completely destroyed after a computation\u2014an extension of the familiar tamper-proof token model. In the DC model, we demonstrate that two parties can compute any function of their physical inputs in a way that leaks at most 1 bit of additional information to either party. Moreover, our result generalizes to any multi-party physical computation. Formally, our protocols achieve unconditional UC-security with input-dependent abort.", 
    "editor": [
      {
        "familyName": "Dodis", 
        "givenName": "Yevgeniy", 
        "type": "Person"
      }, 
      {
        "familyName": "Nielsen", 
        "givenName": "Jesper Buus", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-46494-6_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-662-46493-9", 
        "978-3-662-46494-6"
      ], 
      "name": "Theory of Cryptography", 
      "type": "Book"
    }, 
    "keywords": [
      "physical computation", 
      "zero-knowledge proofs", 
      "two-party computation", 
      "zero-knowledge protocols", 
      "zero-knowledge", 
      "set of parties", 
      "token model", 
      "computation", 
      "general framework", 
      "orthogonal approach", 
      "physical inputs", 
      "Boolean functions", 
      "second party", 
      "hardware", 
      "input", 
      "information", 
      "protocol", 
      "abort", 
      "additional information", 
      "bits", 
      "disposable circuits", 
      "parties", 
      "recent work", 
      "framework", 
      "way", 
      "work", 
      "DC model", 
      "set", 
      "special case", 
      "proof", 
      "model", 
      "modeling", 
      "extension", 
      "example", 
      "output", 
      "circuit", 
      "function", 
      "results", 
      "theory", 
      "general theory", 
      "cases", 
      "properties", 
      "physical properties", 
      "paper", 
      "approach", 
      "secure physical computation", 
      "CRYPTO\u201914", 
      "familiar tamper-proof token model", 
      "tamper-proof token model", 
      "multi-party physical computation", 
      "input-dependent abort"
    ], 
    "name": "Secure Physical Computation Using Disposable Circuits", 
    "pagination": "182-198", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021002792"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-46494-6_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-46494-6_9", 
      "https://app.dimensions.ai/details/publication/pub.1021002792"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_358.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-46494-6_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-46494-6_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-46494-6_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-46494-6_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-46494-6_9'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      23 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-46494-6_9 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N0399e051c83d4c4c9316a90248cd0ffb
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description In a secure physical computation, a set of parties each have physical inputs and jointly compute a function of their inputs in a way that reveals no information to any party except for the output of the function. Recent work in CRYPTO’14 presented examples of physical zero-knowledge proofs of physical properties, a special case of secure physical two-party computation in which one party has a physical input and the second party verifies a boolean function of that input. While the work suggested a general framework for modeling and analyzing physical zero-knowledge protocols, it did not provide a general theory of how to prove any physical property with zero-knowledge. This paper takes an orthogonal approach using disposable circuits (DC)—cheap hardware tokens that can be completely destroyed after a computation—an extension of the familiar tamper-proof token model. In the DC model, we demonstrate that two parties can compute any function of their physical inputs in a way that leaks at most 1 bit of additional information to either party. Moreover, our result generalizes to any multi-party physical computation. Formally, our protocols achieve unconditional UC-security with input-dependent abort.
7 schema:editor N17371a2ba1b74c7db2bee6e1c9f48ea4
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nf36400b866484b3dacf7c5a9a7d5dd2d
12 schema:keywords Boolean functions
13 CRYPTO’14
14 DC model
15 abort
16 additional information
17 approach
18 bits
19 cases
20 circuit
21 computation
22 disposable circuits
23 example
24 extension
25 familiar tamper-proof token model
26 framework
27 function
28 general framework
29 general theory
30 hardware
31 information
32 input
33 input-dependent abort
34 model
35 modeling
36 multi-party physical computation
37 orthogonal approach
38 output
39 paper
40 parties
41 physical computation
42 physical inputs
43 physical properties
44 proof
45 properties
46 protocol
47 recent work
48 results
49 second party
50 secure physical computation
51 set
52 set of parties
53 special case
54 tamper-proof token model
55 theory
56 token model
57 two-party computation
58 way
59 work
60 zero-knowledge
61 zero-knowledge proofs
62 zero-knowledge protocols
63 schema:name Secure Physical Computation Using Disposable Circuits
64 schema:pagination 182-198
65 schema:productId N87d65e79a7bf4bdeb51c185323b5eabb
66 N9091b2b53d444fc1a4f7d2ece0ed8ab2
67 schema:publisher Ne25c4bc6549341bf993c38d7f7996103
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021002792
69 https://doi.org/10.1007/978-3-662-46494-6_9
70 schema:sdDatePublished 2022-01-01T19:20
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N38b26784e5124665b5b81ccba424574d
73 schema:url https://doi.org/10.1007/978-3-662-46494-6_9
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N0399e051c83d4c4c9316a90248cd0ffb rdf:first sg:person.011321400203.19
78 rdf:rest Nccb66f2045cf4e5294f179a857250d50
79 N0798728118004941b153a051c225d82d rdf:first N6d80c1aea10e4cb1b09cf47400bdf58b
80 rdf:rest rdf:nil
81 N0fd623776fda4f53bce26a32fcb69dac rdf:first sg:person.07776170271.83
82 rdf:rest rdf:nil
83 N17371a2ba1b74c7db2bee6e1c9f48ea4 rdf:first N9ef2a63a6f2048d9834caacbfd520fd8
84 rdf:rest N0798728118004941b153a051c225d82d
85 N38b26784e5124665b5b81ccba424574d schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N6d80c1aea10e4cb1b09cf47400bdf58b schema:familyName Nielsen
88 schema:givenName Jesper Buus
89 rdf:type schema:Person
90 N87d65e79a7bf4bdeb51c185323b5eabb schema:name doi
91 schema:value 10.1007/978-3-662-46494-6_9
92 rdf:type schema:PropertyValue
93 N9091b2b53d444fc1a4f7d2ece0ed8ab2 schema:name dimensions_id
94 schema:value pub.1021002792
95 rdf:type schema:PropertyValue
96 N9ef2a63a6f2048d9834caacbfd520fd8 schema:familyName Dodis
97 schema:givenName Yevgeniy
98 rdf:type schema:Person
99 Nccb66f2045cf4e5294f179a857250d50 rdf:first sg:person.010210234715.65
100 rdf:rest N0fd623776fda4f53bce26a32fcb69dac
101 Ne25c4bc6549341bf993c38d7f7996103 schema:name Springer Nature
102 rdf:type schema:Organisation
103 Nf36400b866484b3dacf7c5a9a7d5dd2d schema:isbn 978-3-662-46493-9
104 978-3-662-46494-6
105 schema:name Theory of Cryptography
106 rdf:type schema:Book
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
111 schema:name Computation Theory and Mathematics
112 rdf:type schema:DefinedTerm
113 sg:person.010210234715.65 schema:affiliation grid-institutes:grid.5386.8
114 schema:familyName Freund
115 schema:givenName Daniel
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010210234715.65
117 rdf:type schema:Person
118 sg:person.011321400203.19 schema:affiliation grid-institutes:grid.21729.3f
119 schema:familyName Fisch
120 schema:givenName Ben A.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321400203.19
122 rdf:type schema:Person
123 sg:person.07776170271.83 schema:affiliation grid-institutes:grid.13992.30
124 schema:familyName Naor
125 schema:givenName Moni
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07776170271.83
127 rdf:type schema:Person
128 grid-institutes:grid.13992.30 schema:alternateName Weizmann Institute of Science, Israel
129 schema:name Weizmann Institute of Science, Israel
130 rdf:type schema:Organization
131 grid-institutes:grid.21729.3f schema:alternateName Columbia University, USA
132 schema:name Columbia University, USA
133 rdf:type schema:Organization
134 grid-institutes:grid.5386.8 schema:alternateName Cornell University, USA
135 schema:name Cornell University, USA
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...