Towards Auto-remediation in Services Delivery: Context-Based Classification of Noisy and Unstructured Tickets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Gargi B. Dasgupta , Tapan K. Nayak , Arjun R. Akula , Shivali Agarwal , Shripad J. Nadgowda

ABSTRACT

Service interactions account for major source of revenue and employment in many modern economies, and yet the service operations management process remains extremely complex. Ticket is the fundamental management entity in this process and resolution of tickets remains largely human intensive. A large portion of these human executed resolution tasks are repetitive in nature and can be automated. Ticket description analytics can be used to automatically identify the true category of the problem. This when combined with automated remediation actions considerably reduces the human effort. We look at monitoring data in a big provider’s domain and abstract out the repeatable tasks from the noisy and unstructured human-readable text in tickets. We present a novel approach for automatic problem determination from this noisy and unstructured text. The approach uses two distinct levels of analysis, (a) correlating different data sources to obtain a richer text followed by (b) context based classification of the correlated data. We report on accuracy and efficiency of our approach using real customer data. More... »

PAGES

478-485

Book

TITLE

Service-Oriented Computing

ISBN

978-3-662-45390-2
978-3-662-45391-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39

DOI

http://dx.doi.org/10.1007/978-3-662-45391-9_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042719664


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dasgupta", 
        "givenName": "Gargi B.", 
        "id": "sg:person.010542242141.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010542242141.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nayak", 
        "givenName": "Tapan K.", 
        "id": "sg:person.010526735637.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526735637.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akula", 
        "givenName": "Arjun R.", 
        "id": "sg:person.013545630073.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545630073.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agarwal", 
        "givenName": "Shivali", 
        "id": "sg:person.011246033443.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246033443.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadgowda", 
        "givenName": "Shripad J.", 
        "id": "sg:person.013734404073.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013734404073.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1401890.1401964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014664342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2339530.2339744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025634846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/1454159.1454193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wsc.2009.5429275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093903489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2008.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094878970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/srii.2011.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095020070"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Service interactions account for major source of revenue and employment in many modern economies, and yet the service operations management process remains extremely complex. Ticket is the fundamental management entity in this process and resolution of tickets remains largely human intensive. A large portion of these human executed resolution tasks are repetitive in nature and can be automated. Ticket description analytics can be used to automatically identify the true category of the problem. This when combined with automated remediation actions considerably reduces the human effort. We look at monitoring data in a big provider\u2019s domain and abstract out the repeatable tasks from the noisy and unstructured human-readable text in tickets. We present a novel approach for automatic problem determination from this noisy and unstructured text. The approach uses two distinct levels of analysis, (a) correlating different data sources to obtain a richer text followed by (b) context based classification of the correlated data. We report on accuracy and efficiency of our approach using real customer data.", 
    "editor": [
      {
        "familyName": "Franch", 
        "givenName": "Xavier", 
        "type": "Person"
      }, 
      {
        "familyName": "Ghose", 
        "givenName": "Aditya K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Lewis", 
        "givenName": "Grace A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Bhiri", 
        "givenName": "Sami", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-45391-9_39", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-45390-2", 
        "978-3-662-45391-9"
      ], 
      "name": "Service-Oriented Computing", 
      "type": "Book"
    }, 
    "name": "Towards Auto-remediation in Services Delivery: Context-Based Classification of Noisy and Unstructured Tickets", 
    "pagination": "478-485", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-45391-9_39"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb7dc63ea73db87c60684c29702161af541f47c2052cb3b1c73f8c1bec2539f6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042719664"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-45391-9_39", 
      "https://app.dimensions.ai/details/publication/pub.1042719664"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-45391-9_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-45391-9_39 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3879613bf29f4c77a41df5b3f68cd43e
4 schema:citation https://doi.org/10.1109/icdm.2008.26
5 https://doi.org/10.1109/srii.2011.95
6 https://doi.org/10.1109/wsc.2009.5429275
7 https://doi.org/10.1145/1401890.1401964
8 https://doi.org/10.1145/2339530.2339744
9 https://doi.org/10.14778/1454159.1454193
10 schema:datePublished 2014
11 schema:datePublishedReg 2014-01-01
12 schema:description Service interactions account for major source of revenue and employment in many modern economies, and yet the service operations management process remains extremely complex. Ticket is the fundamental management entity in this process and resolution of tickets remains largely human intensive. A large portion of these human executed resolution tasks are repetitive in nature and can be automated. Ticket description analytics can be used to automatically identify the true category of the problem. This when combined with automated remediation actions considerably reduces the human effort. We look at monitoring data in a big provider’s domain and abstract out the repeatable tasks from the noisy and unstructured human-readable text in tickets. We present a novel approach for automatic problem determination from this noisy and unstructured text. The approach uses two distinct levels of analysis, (a) correlating different data sources to obtain a richer text followed by (b) context based classification of the correlated data. We report on accuracy and efficiency of our approach using real customer data.
13 schema:editor N0d30fbd876ec4f11beb2b47581d90683
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nfe3363d5c3d64ebabef89d6a46e996bd
18 schema:name Towards Auto-remediation in Services Delivery: Context-Based Classification of Noisy and Unstructured Tickets
19 schema:pagination 478-485
20 schema:productId N49fbf57931404a3da6f07fdfce692171
21 N60d5aa7bb8104a0dbe7d4749b201d4b0
22 Nf3ab6d8403e94779951e98c715103958
23 schema:publisher N81cbad6f0b9a48bfaed87a5925c0ead2
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042719664
25 https://doi.org/10.1007/978-3-662-45391-9_39
26 schema:sdDatePublished 2019-04-15T22:57
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N42c029bf98294196976df8b88030f22c
29 schema:url http://link.springer.com/10.1007/978-3-662-45391-9_39
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N03cda18f9e3d4f30a23e12e479d5fbc5 rdf:first N9a83566ab1914d34b8c2f302cff157a6
34 rdf:rest rdf:nil
35 N0d30fbd876ec4f11beb2b47581d90683 rdf:first N4ae18626c12b4fe4800ac5368e4f1723
36 rdf:rest Ne4908e8b333948ebbbf07dc61e423f4f
37 N22bc2de4a4c64cc9b293af3690a8d5c7 rdf:first sg:person.010526735637.54
38 rdf:rest N566751a616a146dd9b881e9a939e698b
39 N3879613bf29f4c77a41df5b3f68cd43e rdf:first sg:person.010542242141.36
40 rdf:rest N22bc2de4a4c64cc9b293af3690a8d5c7
41 N42c029bf98294196976df8b88030f22c schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N49fbf57931404a3da6f07fdfce692171 schema:name doi
44 schema:value 10.1007/978-3-662-45391-9_39
45 rdf:type schema:PropertyValue
46 N4ae18626c12b4fe4800ac5368e4f1723 schema:familyName Franch
47 schema:givenName Xavier
48 rdf:type schema:Person
49 N566751a616a146dd9b881e9a939e698b rdf:first sg:person.013545630073.12
50 rdf:rest N8fec883cfd594e66a079f2f80794f017
51 N5ed8e49d1dd040afa79f192c14bfdb11 rdf:first Nd73e005133a542fa8ecb767add52027b
52 rdf:rest N03cda18f9e3d4f30a23e12e479d5fbc5
53 N60d5aa7bb8104a0dbe7d4749b201d4b0 schema:name readcube_id
54 schema:value cb7dc63ea73db87c60684c29702161af541f47c2052cb3b1c73f8c1bec2539f6
55 rdf:type schema:PropertyValue
56 N81cbad6f0b9a48bfaed87a5925c0ead2 schema:location Berlin, Heidelberg
57 schema:name Springer Berlin Heidelberg
58 rdf:type schema:Organisation
59 N8fec883cfd594e66a079f2f80794f017 rdf:first sg:person.011246033443.91
60 rdf:rest Na3ae891aee2c492d992eca3ce5b2a5ed
61 N9561f4cedd124312a243c83aa802af99 schema:familyName Ghose
62 schema:givenName Aditya K.
63 rdf:type schema:Person
64 N9a83566ab1914d34b8c2f302cff157a6 schema:familyName Bhiri
65 schema:givenName Sami
66 rdf:type schema:Person
67 Na3ae891aee2c492d992eca3ce5b2a5ed rdf:first sg:person.013734404073.22
68 rdf:rest rdf:nil
69 Nd73e005133a542fa8ecb767add52027b schema:familyName Lewis
70 schema:givenName Grace A.
71 rdf:type schema:Person
72 Ne4908e8b333948ebbbf07dc61e423f4f rdf:first N9561f4cedd124312a243c83aa802af99
73 rdf:rest N5ed8e49d1dd040afa79f192c14bfdb11
74 Nf3ab6d8403e94779951e98c715103958 schema:name dimensions_id
75 schema:value pub.1042719664
76 rdf:type schema:PropertyValue
77 Nfe3363d5c3d64ebabef89d6a46e996bd schema:isbn 978-3-662-45390-2
78 978-3-662-45391-9
79 schema:name Service-Oriented Computing
80 rdf:type schema:Book
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:person.010526735637.54 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
88 schema:familyName Nayak
89 schema:givenName Tapan K.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526735637.54
91 rdf:type schema:Person
92 sg:person.010542242141.36 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
93 schema:familyName Dasgupta
94 schema:givenName Gargi B.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010542242141.36
96 rdf:type schema:Person
97 sg:person.011246033443.91 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
98 schema:familyName Agarwal
99 schema:givenName Shivali
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246033443.91
101 rdf:type schema:Person
102 sg:person.013545630073.12 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
103 schema:familyName Akula
104 schema:givenName Arjun R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545630073.12
106 rdf:type schema:Person
107 sg:person.013734404073.22 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
108 schema:familyName Nadgowda
109 schema:givenName Shripad J.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013734404073.22
111 rdf:type schema:Person
112 https://doi.org/10.1109/icdm.2008.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094878970
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/srii.2011.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095020070
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/wsc.2009.5429275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093903489
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/1401890.1401964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014664342
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/2339530.2339744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025634846
121 rdf:type schema:CreativeWork
122 https://doi.org/10.14778/1454159.1454193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367436
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.481550.d schema:alternateName IBM Research - India
125 schema:name IBM Research, Bangalore, India
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...