Towards Auto-remediation in Services Delivery: Context-Based Classification of Noisy and Unstructured Tickets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Gargi B. Dasgupta , Tapan K. Nayak , Arjun R. Akula , Shivali Agarwal , Shripad J. Nadgowda

ABSTRACT

Service interactions account for major source of revenue and employment in many modern economies, and yet the service operations management process remains extremely complex. Ticket is the fundamental management entity in this process and resolution of tickets remains largely human intensive. A large portion of these human executed resolution tasks are repetitive in nature and can be automated. Ticket description analytics can be used to automatically identify the true category of the problem. This when combined with automated remediation actions considerably reduces the human effort. We look at monitoring data in a big provider’s domain and abstract out the repeatable tasks from the noisy and unstructured human-readable text in tickets. We present a novel approach for automatic problem determination from this noisy and unstructured text. The approach uses two distinct levels of analysis, (a) correlating different data sources to obtain a richer text followed by (b) context based classification of the correlated data. We report on accuracy and efficiency of our approach using real customer data. More... »

PAGES

478-485

Book

TITLE

Service-Oriented Computing

ISBN

978-3-662-45390-2
978-3-662-45391-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39

DOI

http://dx.doi.org/10.1007/978-3-662-45391-9_39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042719664


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dasgupta", 
        "givenName": "Gargi B.", 
        "id": "sg:person.010542242141.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010542242141.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nayak", 
        "givenName": "Tapan K.", 
        "id": "sg:person.010526735637.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526735637.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akula", 
        "givenName": "Arjun R.", 
        "id": "sg:person.013545630073.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545630073.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agarwal", 
        "givenName": "Shivali", 
        "id": "sg:person.011246033443.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246033443.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadgowda", 
        "givenName": "Shripad J.", 
        "id": "sg:person.013734404073.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013734404073.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1401890.1401964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014664342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2339530.2339744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025634846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/1454159.1454193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wsc.2009.5429275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093903489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2008.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094878970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/srii.2011.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095020070"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Service interactions account for major source of revenue and employment in many modern economies, and yet the service operations management process remains extremely complex. Ticket is the fundamental management entity in this process and resolution of tickets remains largely human intensive. A large portion of these human executed resolution tasks are repetitive in nature and can be automated. Ticket description analytics can be used to automatically identify the true category of the problem. This when combined with automated remediation actions considerably reduces the human effort. We look at monitoring data in a big provider\u2019s domain and abstract out the repeatable tasks from the noisy and unstructured human-readable text in tickets. We present a novel approach for automatic problem determination from this noisy and unstructured text. The approach uses two distinct levels of analysis, (a) correlating different data sources to obtain a richer text followed by (b) context based classification of the correlated data. We report on accuracy and efficiency of our approach using real customer data.", 
    "editor": [
      {
        "familyName": "Franch", 
        "givenName": "Xavier", 
        "type": "Person"
      }, 
      {
        "familyName": "Ghose", 
        "givenName": "Aditya K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Lewis", 
        "givenName": "Grace A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Bhiri", 
        "givenName": "Sami", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-45391-9_39", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-45390-2", 
        "978-3-662-45391-9"
      ], 
      "name": "Service-Oriented Computing", 
      "type": "Book"
    }, 
    "name": "Towards Auto-remediation in Services Delivery: Context-Based Classification of Noisy and Unstructured Tickets", 
    "pagination": "478-485", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-45391-9_39"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb7dc63ea73db87c60684c29702161af541f47c2052cb3b1c73f8c1bec2539f6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042719664"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-45391-9_39", 
      "https://app.dimensions.ai/details/publication/pub.1042719664"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-45391-9_39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45391-9_39'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-45391-9_39 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb385bf98b9124dcbb686a0b06822bfd9
4 schema:citation https://doi.org/10.1109/icdm.2008.26
5 https://doi.org/10.1109/srii.2011.95
6 https://doi.org/10.1109/wsc.2009.5429275
7 https://doi.org/10.1145/1401890.1401964
8 https://doi.org/10.1145/2339530.2339744
9 https://doi.org/10.14778/1454159.1454193
10 schema:datePublished 2014
11 schema:datePublishedReg 2014-01-01
12 schema:description Service interactions account for major source of revenue and employment in many modern economies, and yet the service operations management process remains extremely complex. Ticket is the fundamental management entity in this process and resolution of tickets remains largely human intensive. A large portion of these human executed resolution tasks are repetitive in nature and can be automated. Ticket description analytics can be used to automatically identify the true category of the problem. This when combined with automated remediation actions considerably reduces the human effort. We look at monitoring data in a big provider’s domain and abstract out the repeatable tasks from the noisy and unstructured human-readable text in tickets. We present a novel approach for automatic problem determination from this noisy and unstructured text. The approach uses two distinct levels of analysis, (a) correlating different data sources to obtain a richer text followed by (b) context based classification of the correlated data. We report on accuracy and efficiency of our approach using real customer data.
13 schema:editor N404fc2da7c0f41b6bbc3865d56776975
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N6cede1f534f849dda60f402408fd85aa
18 schema:name Towards Auto-remediation in Services Delivery: Context-Based Classification of Noisy and Unstructured Tickets
19 schema:pagination 478-485
20 schema:productId N333d45419c5147e9a30f3df1ea351dd0
21 N7e15e08452bb45a3a84376b2e642f0e1
22 Nb06860e153b54d6da08b9ece613bfd02
23 schema:publisher Nf0ea2faa5c8143d1af26553d1a9ff844
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042719664
25 https://doi.org/10.1007/978-3-662-45391-9_39
26 schema:sdDatePublished 2019-04-15T22:57
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Na410c4c75ce144e29bf319ebceef7937
29 schema:url http://link.springer.com/10.1007/978-3-662-45391-9_39
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N01071e4dc40047789a77d7b38a5cc012 rdf:first sg:person.010526735637.54
34 rdf:rest N1b132983520f47aca04114af7f2ae8a3
35 N096ff1299fc74647a77ab1aac2c0c063 schema:familyName Lewis
36 schema:givenName Grace A.
37 rdf:type schema:Person
38 N1b132983520f47aca04114af7f2ae8a3 rdf:first sg:person.013545630073.12
39 rdf:rest N6207b020800d4cc7990e3cd54b89cbd1
40 N333d45419c5147e9a30f3df1ea351dd0 schema:name readcube_id
41 schema:value cb7dc63ea73db87c60684c29702161af541f47c2052cb3b1c73f8c1bec2539f6
42 rdf:type schema:PropertyValue
43 N360a8c851b594f54b835f17ce66a71de rdf:first N096ff1299fc74647a77ab1aac2c0c063
44 rdf:rest N3cc5e9e57a6045349a91247b45932635
45 N3cc5e9e57a6045349a91247b45932635 rdf:first N94873518880f477985190786bb86a6c4
46 rdf:rest rdf:nil
47 N404fc2da7c0f41b6bbc3865d56776975 rdf:first N7766fc9882b4498e8d873a87d3ca3669
48 rdf:rest Nc694d9bb28b94b518661f229acf28f10
49 N6207b020800d4cc7990e3cd54b89cbd1 rdf:first sg:person.011246033443.91
50 rdf:rest N7dd416753d394f9090e35a21e0ff323b
51 N6626e74040a84574a04c265b97ebac90 schema:familyName Ghose
52 schema:givenName Aditya K.
53 rdf:type schema:Person
54 N6cede1f534f849dda60f402408fd85aa schema:isbn 978-3-662-45390-2
55 978-3-662-45391-9
56 schema:name Service-Oriented Computing
57 rdf:type schema:Book
58 N7766fc9882b4498e8d873a87d3ca3669 schema:familyName Franch
59 schema:givenName Xavier
60 rdf:type schema:Person
61 N7dd416753d394f9090e35a21e0ff323b rdf:first sg:person.013734404073.22
62 rdf:rest rdf:nil
63 N7e15e08452bb45a3a84376b2e642f0e1 schema:name dimensions_id
64 schema:value pub.1042719664
65 rdf:type schema:PropertyValue
66 N94873518880f477985190786bb86a6c4 schema:familyName Bhiri
67 schema:givenName Sami
68 rdf:type schema:Person
69 Na410c4c75ce144e29bf319ebceef7937 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nb06860e153b54d6da08b9ece613bfd02 schema:name doi
72 schema:value 10.1007/978-3-662-45391-9_39
73 rdf:type schema:PropertyValue
74 Nb385bf98b9124dcbb686a0b06822bfd9 rdf:first sg:person.010542242141.36
75 rdf:rest N01071e4dc40047789a77d7b38a5cc012
76 Nc694d9bb28b94b518661f229acf28f10 rdf:first N6626e74040a84574a04c265b97ebac90
77 rdf:rest N360a8c851b594f54b835f17ce66a71de
78 Nf0ea2faa5c8143d1af26553d1a9ff844 schema:location Berlin, Heidelberg
79 schema:name Springer Berlin Heidelberg
80 rdf:type schema:Organisation
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:person.010526735637.54 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
88 schema:familyName Nayak
89 schema:givenName Tapan K.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526735637.54
91 rdf:type schema:Person
92 sg:person.010542242141.36 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
93 schema:familyName Dasgupta
94 schema:givenName Gargi B.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010542242141.36
96 rdf:type schema:Person
97 sg:person.011246033443.91 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
98 schema:familyName Agarwal
99 schema:givenName Shivali
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011246033443.91
101 rdf:type schema:Person
102 sg:person.013545630073.12 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
103 schema:familyName Akula
104 schema:givenName Arjun R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545630073.12
106 rdf:type schema:Person
107 sg:person.013734404073.22 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
108 schema:familyName Nadgowda
109 schema:givenName Shripad J.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013734404073.22
111 rdf:type schema:Person
112 https://doi.org/10.1109/icdm.2008.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094878970
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/srii.2011.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095020070
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/wsc.2009.5429275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093903489
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/1401890.1401964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014664342
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/2339530.2339744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025634846
121 rdf:type schema:CreativeWork
122 https://doi.org/10.14778/1454159.1454193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367436
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.481550.d schema:alternateName IBM Research - India
125 schema:name IBM Research, Bangalore, India
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...