Fused Visualization for Large-Scale Time-Varying Volume Data with Adaptive Particle-Based Rendering View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Kun Zhao , Naohisa Sakamoto , Koji Koyamada

ABSTRACT

Recently, there is a strong need for the fused visualization of different objects in many simulation fields, especially for the medical domain (e.g., the fusion of different organs). That is because it is desirable and advantageous to show the different objects and analyze the relationship between them. Nevertheless, such a simulation date is always resulted in a large-scale time-varying volume data, which make the fused visualization even more difficult. To solve this problem, we use a sorting-free rendering technique, Adaptive Particle-based Rendering (APBR), to visualize the large-scale time-varying volume data. Because this method visualizes the volume data by generating opaque particles from the original volume data and projects these particles to the image plane, the visibility sorting is not needed. This makes the fusion of different objects and handling of large-scale volume data is very easy. Moreover, our proposed APBR method can adaptively apply different particle generation process to visualize the volume data based on different viewpoints. This feature can make our system keep an interactive frame rate and also a relatively high image quality. With the APBR, we also develop a time-varying rendering into our system so that the rendering for the large-scale time-varying data also becomes possible. To verify the efficiency, we apply our APBR system to the large-scale blood flow dataset. The experimental results and the user feedbacks show that our system can fuse different objects efficiently while keeping an interactive frame rate and a good image quality, which is very meaningful in the visual analysis. More... »

PAGES

228-242

References to SciGraph publications

Book

TITLE

AsiaSim 2014

ISBN

978-3-662-45288-2
978-3-662-45289-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20

DOI

http://dx.doi.org/10.1007/978-3-662-45289-9_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030032753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Engineering, Kyoto University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Kun", 
        "id": "sg:person.014153216421.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153216421.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Institute for the Promotion of Excellence in Higher Education, Kyoto University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakamoto", 
        "givenName": "Naohisa", 
        "id": "sg:person.012673466617.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012673466617.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Institute for the Promotion of Excellence in Higher Education, Kyoto University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koyamada", 
        "givenName": "Koji", 
        "id": "sg:person.011755475433.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755475433.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2007.01038.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020219131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8493(00)00037-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027534866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11390-010-9375-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031244099", 
          "https://doi.org/10.1007/s11390-010-9375-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11390-010-9375-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031244099", 
          "https://doi.org/10.1007/s11390-010-9375-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-007-9082-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605923", 
          "https://doi.org/10.1007/s10278-007-9082-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-007-9082-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605923", 
          "https://doi.org/10.1007/s10278-007-9082-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cag.2009.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049650739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1838544.1838546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053114058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/378456.378476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053552638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2009.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2010.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793962313410031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063026104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/uksim.2008.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095318026"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Recently, there is a strong need for the fused visualization of different objects in many simulation fields, especially for the medical domain (e.g., the fusion of different organs). That is because it is desirable and advantageous to show the different objects and analyze the relationship between them. Nevertheless, such a simulation date is always resulted in a large-scale time-varying volume data, which make the fused visualization even more difficult. To solve this problem, we use a sorting-free rendering technique, Adaptive Particle-based Rendering (APBR), to visualize the large-scale time-varying volume data. Because this method visualizes the volume data by generating opaque particles from the original volume data and projects these particles to the image plane, the visibility sorting is not needed. This makes the fusion of different objects and handling of large-scale volume data is very easy. Moreover, our proposed APBR method can adaptively apply different particle generation process to visualize the volume data based on different viewpoints. This feature can make our system keep an interactive frame rate and also a relatively high image quality. With the APBR, we also develop a time-varying rendering into our system so that the rendering for the large-scale time-varying data also becomes possible. To verify the efficiency, we apply our APBR system to the large-scale blood flow dataset. The experimental results and the user feedbacks show that our system can fuse different objects efficiently while keeping an interactive frame rate and a good image quality, which is very meaningful in the visual analysis.", 
    "editor": [
      {
        "familyName": "Tanaka", 
        "givenName": "Satoshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Hasegawa", 
        "givenName": "Kyoko", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Rui", 
        "type": "Person"
      }, 
      {
        "familyName": "Sakamoto", 
        "givenName": "Naohisa", 
        "type": "Person"
      }, 
      {
        "familyName": "Turner", 
        "givenName": "Stephen John", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-45289-9_20", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-45288-2", 
        "978-3-662-45289-9"
      ], 
      "name": "AsiaSim 2014", 
      "type": "Book"
    }, 
    "name": "Fused Visualization for Large-Scale Time-Varying Volume Data with Adaptive Particle-Based Rendering", 
    "pagination": "228-242", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-45289-9_20"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8f12f163dd6ec2c5b01fd4d47073900f7ce0d6cab610fb33710ee749e3a67011"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030032753"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-45289-9_20", 
      "https://app.dimensions.ai/details/publication/pub.1030032753"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000261.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-45289-9_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-45289-9_20 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N44b971541f6444719d512b9fd40ae61d
4 schema:citation sg:pub.10.1007/s10278-007-9082-z
5 sg:pub.10.1007/s11390-010-9375-4
6 https://doi.org/10.1016/j.cag.2009.12.001
7 https://doi.org/10.1016/s0097-8493(00)00037-6
8 https://doi.org/10.1109/tvcg.2009.204
9 https://doi.org/10.1109/tvcg.2010.244
10 https://doi.org/10.1109/uksim.2008.63
11 https://doi.org/10.1111/j.1467-8659.2007.01038.x
12 https://doi.org/10.1142/s1793962313410031
13 https://doi.org/10.1145/1838544.1838546
14 https://doi.org/10.1145/378456.378476
15 https://doi.org/10.3171/2012.11.jns111355
16 schema:datePublished 2014
17 schema:datePublishedReg 2014-01-01
18 schema:description Recently, there is a strong need for the fused visualization of different objects in many simulation fields, especially for the medical domain (e.g., the fusion of different organs). That is because it is desirable and advantageous to show the different objects and analyze the relationship between them. Nevertheless, such a simulation date is always resulted in a large-scale time-varying volume data, which make the fused visualization even more difficult. To solve this problem, we use a sorting-free rendering technique, Adaptive Particle-based Rendering (APBR), to visualize the large-scale time-varying volume data. Because this method visualizes the volume data by generating opaque particles from the original volume data and projects these particles to the image plane, the visibility sorting is not needed. This makes the fusion of different objects and handling of large-scale volume data is very easy. Moreover, our proposed APBR method can adaptively apply different particle generation process to visualize the volume data based on different viewpoints. This feature can make our system keep an interactive frame rate and also a relatively high image quality. With the APBR, we also develop a time-varying rendering into our system so that the rendering for the large-scale time-varying data also becomes possible. To verify the efficiency, we apply our APBR system to the large-scale blood flow dataset. The experimental results and the user feedbacks show that our system can fuse different objects efficiently while keeping an interactive frame rate and a good image quality, which is very meaningful in the visual analysis.
19 schema:editor Nadbef54ee0ee4b4baf6c3e21b41f7278
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N1c1525da89954bd69b6f06f95fc1880e
24 schema:name Fused Visualization for Large-Scale Time-Varying Volume Data with Adaptive Particle-Based Rendering
25 schema:pagination 228-242
26 schema:productId N992b7058ad4e4d4b86352f3fd05f1be7
27 Nd7d8bf6b54b242019e3b35e611c16919
28 Nfde8c5ccdfa2422485610df304f323ed
29 schema:publisher N96b899caf84b4e9b896427065970dc53
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030032753
31 https://doi.org/10.1007/978-3-662-45289-9_20
32 schema:sdDatePublished 2019-04-15T19:09
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N04f8250f65dd4ccdbefee11912328978
35 schema:url http://link.springer.com/10.1007/978-3-662-45289-9_20
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N04f8250f65dd4ccdbefee11912328978 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N1c1525da89954bd69b6f06f95fc1880e schema:isbn 978-3-662-45288-2
42 978-3-662-45289-9
43 schema:name AsiaSim 2014
44 rdf:type schema:Book
45 N1f1260eeaad249a1a02ec0b20395984a schema:familyName Xu
46 schema:givenName Rui
47 rdf:type schema:Person
48 N2672b74ff97a4132bbc7ab39f8b5d2ea rdf:first N9380314c7fb84605b2efa33d09a18eea
49 rdf:rest rdf:nil
50 N3a784e93170f4d4aad436b61188fb347 schema:familyName Tanaka
51 schema:givenName Satoshi
52 rdf:type schema:Person
53 N43a60a3ddd3a447d98465b8d56c23fbc rdf:first N1f1260eeaad249a1a02ec0b20395984a
54 rdf:rest Nc6715ad53a1d4da68b5d7b66beac04bd
55 N44b971541f6444719d512b9fd40ae61d rdf:first sg:person.014153216421.20
56 rdf:rest N7145cdf2183b42f8926e9cdde28745b2
57 N7145cdf2183b42f8926e9cdde28745b2 rdf:first sg:person.012673466617.09
58 rdf:rest Nace4995a95eb4264824a6b3c56dfd16d
59 N754225ec495a433ba1c5e2f784fef084 schema:familyName Sakamoto
60 schema:givenName Naohisa
61 rdf:type schema:Person
62 N9380314c7fb84605b2efa33d09a18eea schema:familyName Turner
63 schema:givenName Stephen John
64 rdf:type schema:Person
65 N96b899caf84b4e9b896427065970dc53 schema:location Berlin, Heidelberg
66 schema:name Springer Berlin Heidelberg
67 rdf:type schema:Organisation
68 N992b7058ad4e4d4b86352f3fd05f1be7 schema:name readcube_id
69 schema:value 8f12f163dd6ec2c5b01fd4d47073900f7ce0d6cab610fb33710ee749e3a67011
70 rdf:type schema:PropertyValue
71 Nace4995a95eb4264824a6b3c56dfd16d rdf:first sg:person.011755475433.60
72 rdf:rest rdf:nil
73 Nadbef54ee0ee4b4baf6c3e21b41f7278 rdf:first N3a784e93170f4d4aad436b61188fb347
74 rdf:rest Ne04b84d2c14642a7883b37a5223d27bf
75 Nb70c8f660be849d496255bdceee9860b schema:familyName Hasegawa
76 schema:givenName Kyoko
77 rdf:type schema:Person
78 Nc6715ad53a1d4da68b5d7b66beac04bd rdf:first N754225ec495a433ba1c5e2f784fef084
79 rdf:rest N2672b74ff97a4132bbc7ab39f8b5d2ea
80 Nd7d8bf6b54b242019e3b35e611c16919 schema:name dimensions_id
81 schema:value pub.1030032753
82 rdf:type schema:PropertyValue
83 Ne04b84d2c14642a7883b37a5223d27bf rdf:first Nb70c8f660be849d496255bdceee9860b
84 rdf:rest N43a60a3ddd3a447d98465b8d56c23fbc
85 Nfde8c5ccdfa2422485610df304f323ed schema:name doi
86 schema:value 10.1007/978-3-662-45289-9_20
87 rdf:type schema:PropertyValue
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:person.011755475433.60 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
95 schema:familyName Koyamada
96 schema:givenName Koji
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755475433.60
98 rdf:type schema:Person
99 sg:person.012673466617.09 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
100 schema:familyName Sakamoto
101 schema:givenName Naohisa
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012673466617.09
103 rdf:type schema:Person
104 sg:person.014153216421.20 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
105 schema:familyName Zhao
106 schema:givenName Kun
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153216421.20
108 rdf:type schema:Person
109 sg:pub.10.1007/s10278-007-9082-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037605923
110 https://doi.org/10.1007/s10278-007-9082-z
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11390-010-9375-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031244099
113 https://doi.org/10.1007/s11390-010-9375-4
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.cag.2009.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049650739
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0097-8493(00)00037-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027534866
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tvcg.2009.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813216
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tvcg.2010.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813421
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/uksim.2008.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095318026
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1467-8659.2007.01038.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020219131
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1142/s1793962313410031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063026104
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1838544.1838546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053114058
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/378456.378476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053552638
132 rdf:type schema:CreativeWork
133 https://doi.org/10.3171/2012.11.jns111355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071077368
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
136 schema:name Graduate School of Engineering, Kyoto University, Japan
137 Institute for the Promotion of Excellence in Higher Education, Kyoto University, Japan
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...