Fused Visualization for Large-Scale Time-Varying Volume Data with Adaptive Particle-Based Rendering View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Kun Zhao , Naohisa Sakamoto , Koji Koyamada

ABSTRACT

Recently, there is a strong need for the fused visualization of different objects in many simulation fields, especially for the medical domain (e.g., the fusion of different organs). That is because it is desirable and advantageous to show the different objects and analyze the relationship between them. Nevertheless, such a simulation date is always resulted in a large-scale time-varying volume data, which make the fused visualization even more difficult. To solve this problem, we use a sorting-free rendering technique, Adaptive Particle-based Rendering (APBR), to visualize the large-scale time-varying volume data. Because this method visualizes the volume data by generating opaque particles from the original volume data and projects these particles to the image plane, the visibility sorting is not needed. This makes the fusion of different objects and handling of large-scale volume data is very easy. Moreover, our proposed APBR method can adaptively apply different particle generation process to visualize the volume data based on different viewpoints. This feature can make our system keep an interactive frame rate and also a relatively high image quality. With the APBR, we also develop a time-varying rendering into our system so that the rendering for the large-scale time-varying data also becomes possible. To verify the efficiency, we apply our APBR system to the large-scale blood flow dataset. The experimental results and the user feedbacks show that our system can fuse different objects efficiently while keeping an interactive frame rate and a good image quality, which is very meaningful in the visual analysis. More... »

PAGES

228-242

References to SciGraph publications

Book

TITLE

AsiaSim 2014

ISBN

978-3-662-45288-2
978-3-662-45289-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20

DOI

http://dx.doi.org/10.1007/978-3-662-45289-9_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030032753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Engineering, Kyoto University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Kun", 
        "id": "sg:person.014153216421.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153216421.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Institute for the Promotion of Excellence in Higher Education, Kyoto University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakamoto", 
        "givenName": "Naohisa", 
        "id": "sg:person.012673466617.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012673466617.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Institute for the Promotion of Excellence in Higher Education, Kyoto University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koyamada", 
        "givenName": "Koji", 
        "id": "sg:person.011755475433.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755475433.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2007.01038.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020219131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8493(00)00037-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027534866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11390-010-9375-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031244099", 
          "https://doi.org/10.1007/s11390-010-9375-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11390-010-9375-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031244099", 
          "https://doi.org/10.1007/s11390-010-9375-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-007-9082-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605923", 
          "https://doi.org/10.1007/s10278-007-9082-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-007-9082-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605923", 
          "https://doi.org/10.1007/s10278-007-9082-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cag.2009.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049650739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1838544.1838546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053114058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/378456.378476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053552638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2009.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2010.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793962313410031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063026104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2012.11.jns111355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071077368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/uksim.2008.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095318026"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Recently, there is a strong need for the fused visualization of different objects in many simulation fields, especially for the medical domain (e.g., the fusion of different organs). That is because it is desirable and advantageous to show the different objects and analyze the relationship between them. Nevertheless, such a simulation date is always resulted in a large-scale time-varying volume data, which make the fused visualization even more difficult. To solve this problem, we use a sorting-free rendering technique, Adaptive Particle-based Rendering (APBR), to visualize the large-scale time-varying volume data. Because this method visualizes the volume data by generating opaque particles from the original volume data and projects these particles to the image plane, the visibility sorting is not needed. This makes the fusion of different objects and handling of large-scale volume data is very easy. Moreover, our proposed APBR method can adaptively apply different particle generation process to visualize the volume data based on different viewpoints. This feature can make our system keep an interactive frame rate and also a relatively high image quality. With the APBR, we also develop a time-varying rendering into our system so that the rendering for the large-scale time-varying data also becomes possible. To verify the efficiency, we apply our APBR system to the large-scale blood flow dataset. The experimental results and the user feedbacks show that our system can fuse different objects efficiently while keeping an interactive frame rate and a good image quality, which is very meaningful in the visual analysis.", 
    "editor": [
      {
        "familyName": "Tanaka", 
        "givenName": "Satoshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Hasegawa", 
        "givenName": "Kyoko", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Rui", 
        "type": "Person"
      }, 
      {
        "familyName": "Sakamoto", 
        "givenName": "Naohisa", 
        "type": "Person"
      }, 
      {
        "familyName": "Turner", 
        "givenName": "Stephen John", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-45289-9_20", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-45288-2", 
        "978-3-662-45289-9"
      ], 
      "name": "AsiaSim 2014", 
      "type": "Book"
    }, 
    "name": "Fused Visualization for Large-Scale Time-Varying Volume Data with Adaptive Particle-Based Rendering", 
    "pagination": "228-242", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-45289-9_20"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8f12f163dd6ec2c5b01fd4d47073900f7ce0d6cab610fb33710ee749e3a67011"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030032753"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-45289-9_20", 
      "https://app.dimensions.ai/details/publication/pub.1030032753"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000261.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-45289-9_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-45289-9_20'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-45289-9_20 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3c9fbc71f38c4a5fa94782e4cc373456
4 schema:citation sg:pub.10.1007/s10278-007-9082-z
5 sg:pub.10.1007/s11390-010-9375-4
6 https://doi.org/10.1016/j.cag.2009.12.001
7 https://doi.org/10.1016/s0097-8493(00)00037-6
8 https://doi.org/10.1109/tvcg.2009.204
9 https://doi.org/10.1109/tvcg.2010.244
10 https://doi.org/10.1109/uksim.2008.63
11 https://doi.org/10.1111/j.1467-8659.2007.01038.x
12 https://doi.org/10.1142/s1793962313410031
13 https://doi.org/10.1145/1838544.1838546
14 https://doi.org/10.1145/378456.378476
15 https://doi.org/10.3171/2012.11.jns111355
16 schema:datePublished 2014
17 schema:datePublishedReg 2014-01-01
18 schema:description Recently, there is a strong need for the fused visualization of different objects in many simulation fields, especially for the medical domain (e.g., the fusion of different organs). That is because it is desirable and advantageous to show the different objects and analyze the relationship between them. Nevertheless, such a simulation date is always resulted in a large-scale time-varying volume data, which make the fused visualization even more difficult. To solve this problem, we use a sorting-free rendering technique, Adaptive Particle-based Rendering (APBR), to visualize the large-scale time-varying volume data. Because this method visualizes the volume data by generating opaque particles from the original volume data and projects these particles to the image plane, the visibility sorting is not needed. This makes the fusion of different objects and handling of large-scale volume data is very easy. Moreover, our proposed APBR method can adaptively apply different particle generation process to visualize the volume data based on different viewpoints. This feature can make our system keep an interactive frame rate and also a relatively high image quality. With the APBR, we also develop a time-varying rendering into our system so that the rendering for the large-scale time-varying data also becomes possible. To verify the efficiency, we apply our APBR system to the large-scale blood flow dataset. The experimental results and the user feedbacks show that our system can fuse different objects efficiently while keeping an interactive frame rate and a good image quality, which is very meaningful in the visual analysis.
19 schema:editor N3b3843e24ac449858441f0688dbe6b17
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N441fc7a183524e51a07b6b9b9975671a
24 schema:name Fused Visualization for Large-Scale Time-Varying Volume Data with Adaptive Particle-Based Rendering
25 schema:pagination 228-242
26 schema:productId N2cb9c2ea06044f3e84d8cf4489fb8694
27 N4ee929d24b2446f09035c7d09364744e
28 Nc9fdbd4936a141468b38441687949be7
29 schema:publisher N1c9904b1b30e4a75bae5cf1bf6b7350c
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030032753
31 https://doi.org/10.1007/978-3-662-45289-9_20
32 schema:sdDatePublished 2019-04-15T19:09
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N50f5aead850742a1891cdb6a034f0a72
35 schema:url http://link.springer.com/10.1007/978-3-662-45289-9_20
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N19ceee0a9e1f4fb7a52ca739cdce9d8f rdf:first Nd9210ef4cbd34d0cbe374cb832fa517d
40 rdf:rest Nb873cf56cc764025ba56f44986c2fa30
41 N1c9904b1b30e4a75bae5cf1bf6b7350c schema:location Berlin, Heidelberg
42 schema:name Springer Berlin Heidelberg
43 rdf:type schema:Organisation
44 N23d68a5bf1f84659a725e415db7fd86e schema:familyName Hasegawa
45 schema:givenName Kyoko
46 rdf:type schema:Person
47 N2cb9c2ea06044f3e84d8cf4489fb8694 schema:name doi
48 schema:value 10.1007/978-3-662-45289-9_20
49 rdf:type schema:PropertyValue
50 N3b3843e24ac449858441f0688dbe6b17 rdf:first N9fe4fd9ce7c343bdab2aa1cd9e116896
51 rdf:rest N67b5f83e201245f99aa25bb3d994ced1
52 N3c9fbc71f38c4a5fa94782e4cc373456 rdf:first sg:person.014153216421.20
53 rdf:rest Nf4496bd666b5437a91a1c8fccc4062df
54 N441fc7a183524e51a07b6b9b9975671a schema:isbn 978-3-662-45288-2
55 978-3-662-45289-9
56 schema:name AsiaSim 2014
57 rdf:type schema:Book
58 N4ee929d24b2446f09035c7d09364744e schema:name dimensions_id
59 schema:value pub.1030032753
60 rdf:type schema:PropertyValue
61 N50f5aead850742a1891cdb6a034f0a72 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N67b5f83e201245f99aa25bb3d994ced1 rdf:first N23d68a5bf1f84659a725e415db7fd86e
64 rdf:rest Nf5573311d3ba4a309cc857728929d5ad
65 N9fe4fd9ce7c343bdab2aa1cd9e116896 schema:familyName Tanaka
66 schema:givenName Satoshi
67 rdf:type schema:Person
68 Na5a3a169040f46d7accb92535778cc0a rdf:first sg:person.011755475433.60
69 rdf:rest rdf:nil
70 Nb873cf56cc764025ba56f44986c2fa30 rdf:first Nbb1d65245fde44e7a63156995cad4fd9
71 rdf:rest rdf:nil
72 Nbb1d65245fde44e7a63156995cad4fd9 schema:familyName Turner
73 schema:givenName Stephen John
74 rdf:type schema:Person
75 Nc7d2787b2e8e4434b8fbc20215129866 schema:familyName Xu
76 schema:givenName Rui
77 rdf:type schema:Person
78 Nc9fdbd4936a141468b38441687949be7 schema:name readcube_id
79 schema:value 8f12f163dd6ec2c5b01fd4d47073900f7ce0d6cab610fb33710ee749e3a67011
80 rdf:type schema:PropertyValue
81 Nd9210ef4cbd34d0cbe374cb832fa517d schema:familyName Sakamoto
82 schema:givenName Naohisa
83 rdf:type schema:Person
84 Nf4496bd666b5437a91a1c8fccc4062df rdf:first sg:person.012673466617.09
85 rdf:rest Na5a3a169040f46d7accb92535778cc0a
86 Nf5573311d3ba4a309cc857728929d5ad rdf:first Nc7d2787b2e8e4434b8fbc20215129866
87 rdf:rest N19ceee0a9e1f4fb7a52ca739cdce9d8f
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 sg:person.011755475433.60 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
95 schema:familyName Koyamada
96 schema:givenName Koji
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755475433.60
98 rdf:type schema:Person
99 sg:person.012673466617.09 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
100 schema:familyName Sakamoto
101 schema:givenName Naohisa
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012673466617.09
103 rdf:type schema:Person
104 sg:person.014153216421.20 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
105 schema:familyName Zhao
106 schema:givenName Kun
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153216421.20
108 rdf:type schema:Person
109 sg:pub.10.1007/s10278-007-9082-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037605923
110 https://doi.org/10.1007/s10278-007-9082-z
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11390-010-9375-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031244099
113 https://doi.org/10.1007/s11390-010-9375-4
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.cag.2009.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049650739
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0097-8493(00)00037-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027534866
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tvcg.2009.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813216
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tvcg.2010.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813421
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/uksim.2008.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095318026
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1467-8659.2007.01038.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020219131
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1142/s1793962313410031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063026104
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1145/1838544.1838546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053114058
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/378456.378476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053552638
132 rdf:type schema:CreativeWork
133 https://doi.org/10.3171/2012.11.jns111355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071077368
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
136 schema:name Graduate School of Engineering, Kyoto University, Japan
137 Institute for the Promotion of Excellence in Higher Education, Kyoto University, Japan
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...