On Virtual Grey Box Obfuscation for General Circuits View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Nir Bitansky , Ran Canetti , Yael Tauman Kalai , Omer Paneth

ABSTRACT

An obfuscator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O$\end{document} is Virtual Grey Box (VGB) for a class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document} of circuits if, for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C\in{\mathcal C}$\end{document} and any predicate π, deducing π(C) given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O(C)$\end{document} is tantamount to deducing π(C) given unbounded computational resources and polynomially many oracle queries to C. VGB obfuscation is often significantly more meaningful than indistinguishability obfuscation (IO). In fact, for some circuit families of interest VGB is equivalent to full-fledged Virtual Black Box obfuscation.We investigate the feasibility of obtaining VGB obfuscation for general circuits. We first formulate a natural strengthening of IO, called strong IO (SIO). Essentially, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O$\end{document} is SIO for class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}(C)\approx{\mathcal O}(C')$\end{document} whenever the pair (C,C′) is taken from a distribution over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document} where, for all x, C(x) ≠ C′(x) only with negligible probability.We then show that an obfuscator is VGB for a class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document} if and only if it is SIO for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document}. This result is unconditional and holds for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document}. We also show that for some circuit collections, SIO implies virtual black-box obfuscation.Finally, we formulate a slightly stronger variant of the semantic security property of graded encoding schemes [Pass-Seth-Telang Crypto 14], and show that existing obfuscators such as the obfuscator of Barak et. al [Eurocrypt 14] are SIO for all circuits in NC1, assuming that the underlying graded encoding scheme satisfies our variant of semantic security.Put together, we obtain VGB obfuscation for all NC1 circuits under assumptions that are almost the same as those used by Pass et. al to obtain IO for NC1 circuits. We also show that semantic security is in essence necessary for showing VGB obfuscation. More... »

PAGES

108-125

Book

TITLE

Advances in Cryptology – CRYPTO 2014

ISBN

978-3-662-44380-4
978-3-662-44381-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_7

DOI

http://dx.doi.org/10.1007/978-3-662-44381-1_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006934572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tel Aviv University, Tel Aviv, Israel", 
          "id": "http://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Tel Aviv University, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bitansky", 
        "givenName": "Nir", 
        "id": "sg:person.016302552357.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302552357.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Tel Aviv University, Tel Aviv, Israel", 
            "Boston University, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canetti", 
        "givenName": "Ran", 
        "id": "sg:person.012320111457.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft Research New England, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research New England, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalai", 
        "givenName": "Yael Tauman", 
        "id": "sg:person.015074540743.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074540743.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Boston University, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paneth", 
        "givenName": "Omer", 
        "id": "sg:person.014073524511.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "An obfuscator \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal O$\\end{document} is Virtual Grey Box (VGB) for a class \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal C$\\end{document} of circuits if, for any \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$C\\in{\\mathcal C}$\\end{document} and any predicate \u03c0, deducing \u03c0(C) given \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal O(C)$\\end{document} is tantamount to deducing \u03c0(C) given unbounded computational resources and polynomially many oracle queries to C. VGB obfuscation is often significantly more meaningful than indistinguishability obfuscation (IO). In fact, for some circuit families of interest VGB is equivalent to full-fledged Virtual Black Box obfuscation.We investigate the feasibility of obtaining VGB obfuscation for general circuits. We first formulate a natural strengthening of IO, called strong IO (SIO). Essentially, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal O$\\end{document} is SIO for class \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal C$\\end{document} if \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\mathcal O}(C)\\approx{\\mathcal O}(C')$\\end{document} whenever the pair (C,C\u2032) is taken from a distribution over \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal C$\\end{document} where, for all x, C(x)\u2009\u2260\u2009C\u2032(x) only with negligible probability.We then show that an obfuscator is VGB for a class \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal C$\\end{document} if and only if it is SIO for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal C$\\end{document}. This result is unconditional and holds for any \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal C$\\end{document}. We also show that for some circuit collections, SIO implies virtual black-box obfuscation.Finally, we formulate a slightly stronger variant of the semantic security property of graded encoding schemes [Pass-Seth-Telang Crypto 14], and show that existing obfuscators such as the obfuscator of Barak et. al [Eurocrypt 14] are SIO for all circuits in NC1, assuming that the underlying graded encoding scheme satisfies our variant of semantic security.Put together, we obtain VGB obfuscation for all NC1 circuits under assumptions that are almost the same as those used by Pass et. al to obtain IO for NC1 circuits. We also show that semantic security is in essence necessary for showing VGB obfuscation.", 
    "editor": [
      {
        "familyName": "Garay", 
        "givenName": "Juan A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gennaro", 
        "givenName": "Rosario", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-44381-1_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-662-44380-4", 
        "978-3-662-44381-1"
      ], 
      "name": "Advances in Cryptology \u2013 CRYPTO 2014", 
      "type": "Book"
    }, 
    "keywords": [
      "Virtual Grey Box", 
      "indistinguishability obfuscation", 
      "virtual black box obfuscation", 
      "semantic security", 
      "unbounded computational resources", 
      "semantic security property", 
      "computational resources", 
      "security properties", 
      "obfuscator", 
      "oracle queries", 
      "obfuscation", 
      "encoding scheme", 
      "scheme satisfies", 
      "grey box", 
      "negligible probability", 
      "NC1 circuits", 
      "general circuits", 
      "security", 
      "queries", 
      "Barak et", 
      "stronger variant", 
      "scheme", 
      "class", 
      "resources", 
      "natural strengthening", 
      "box", 
      "feasibility", 
      "collection", 
      "circuit", 
      "circuit family", 
      "variants", 
      "satisfies", 
      "essence", 
      "probability", 
      "fact", 
      "pairs", 
      "results", 
      "NC1", 
      "assumption", 
      "distribution", 
      "et", 
      "al", 
      "properties", 
      "family", 
      "strengthening"
    ], 
    "name": "On Virtual Grey Box Obfuscation for General Circuits", 
    "pagination": "108-125", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006934572"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-44381-1_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-44381-1_7", 
      "https://app.dimensions.ai/details/publication/pub.1006934572"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_288.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-44381-1_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_7'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      71 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-44381-1_7 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Nc3273a41672a415b8c61c8cc191d9405
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description An obfuscator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O$\end{document} is Virtual Grey Box (VGB) for a class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document} of circuits if, for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C\in{\mathcal C}$\end{document} and any predicate π, deducing π(C) given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O(C)$\end{document} is tantamount to deducing π(C) given unbounded computational resources and polynomially many oracle queries to C. VGB obfuscation is often significantly more meaningful than indistinguishability obfuscation (IO). In fact, for some circuit families of interest VGB is equivalent to full-fledged Virtual Black Box obfuscation.We investigate the feasibility of obtaining VGB obfuscation for general circuits. We first formulate a natural strengthening of IO, called strong IO (SIO). Essentially, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O$\end{document} is SIO for class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document} if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal O}(C)\approx{\mathcal O}(C')$\end{document} whenever the pair (C,C′) is taken from a distribution over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document} where, for all x, C(x) ≠ C′(x) only with negligible probability.We then show that an obfuscator is VGB for a class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document} if and only if it is SIO for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document}. This result is unconditional and holds for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal C$\end{document}. We also show that for some circuit collections, SIO implies virtual black-box obfuscation.Finally, we formulate a slightly stronger variant of the semantic security property of graded encoding schemes [Pass-Seth-Telang Crypto 14], and show that existing obfuscators such as the obfuscator of Barak et. al [Eurocrypt 14] are SIO for all circuits in NC1, assuming that the underlying graded encoding scheme satisfies our variant of semantic security.Put together, we obtain VGB obfuscation for all NC1 circuits under assumptions that are almost the same as those used by Pass et. al to obtain IO for NC1 circuits. We also show that semantic security is in essence necessary for showing VGB obfuscation.
7 schema:editor N7ad542f2287a4bb9b905d37d5f609a68
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nb2ce69acac6441f0901896ee7dc70bcf
12 schema:keywords Barak et
13 NC1
14 NC1 circuits
15 Virtual Grey Box
16 al
17 assumption
18 box
19 circuit
20 circuit family
21 class
22 collection
23 computational resources
24 distribution
25 encoding scheme
26 essence
27 et
28 fact
29 family
30 feasibility
31 general circuits
32 grey box
33 indistinguishability obfuscation
34 natural strengthening
35 negligible probability
36 obfuscation
37 obfuscator
38 oracle queries
39 pairs
40 probability
41 properties
42 queries
43 resources
44 results
45 satisfies
46 scheme
47 scheme satisfies
48 security
49 security properties
50 semantic security
51 semantic security property
52 strengthening
53 stronger variant
54 unbounded computational resources
55 variants
56 virtual black box obfuscation
57 schema:name On Virtual Grey Box Obfuscation for General Circuits
58 schema:pagination 108-125
59 schema:productId N309f983b80e74761b852892982c89209
60 N33021541172b4430a1db7c460c18eda2
61 schema:publisher N3498df45c47942f2a2a435c650e88b23
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934572
63 https://doi.org/10.1007/978-3-662-44381-1_7
64 schema:sdDatePublished 2022-06-01T22:31
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N6ad6c6e6bc304f07a367f128c5c36f9d
67 schema:url https://doi.org/10.1007/978-3-662-44381-1_7
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N309f983b80e74761b852892982c89209 schema:name doi
72 schema:value 10.1007/978-3-662-44381-1_7
73 rdf:type schema:PropertyValue
74 N33021541172b4430a1db7c460c18eda2 schema:name dimensions_id
75 schema:value pub.1006934572
76 rdf:type schema:PropertyValue
77 N3498df45c47942f2a2a435c650e88b23 schema:name Springer Nature
78 rdf:type schema:Organisation
79 N6ad6c6e6bc304f07a367f128c5c36f9d schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N7ad542f2287a4bb9b905d37d5f609a68 rdf:first Nb0625b0abf7e41fb8f3b9a427e681e52
82 rdf:rest Ncef015f2cec645e9b55ae2061a129590
83 N8abf6742f1c640ebb048e480023f1084 schema:familyName Gennaro
84 schema:givenName Rosario
85 rdf:type schema:Person
86 Nb0625b0abf7e41fb8f3b9a427e681e52 schema:familyName Garay
87 schema:givenName Juan A.
88 rdf:type schema:Person
89 Nb2ce69acac6441f0901896ee7dc70bcf schema:isbn 978-3-662-44380-4
90 978-3-662-44381-1
91 schema:name Advances in Cryptology – CRYPTO 2014
92 rdf:type schema:Book
93 Nb40e5c8fb5ae4bdeb5f37cf3612a8199 rdf:first sg:person.014073524511.68
94 rdf:rest rdf:nil
95 Nb9677aa0b6784abba90c145cede9834f rdf:first sg:person.015074540743.62
96 rdf:rest Nb40e5c8fb5ae4bdeb5f37cf3612a8199
97 Nc3273a41672a415b8c61c8cc191d9405 rdf:first sg:person.016302552357.74
98 rdf:rest Ndee0c084c0dc43199c4b00ce7a7c1231
99 Ncef015f2cec645e9b55ae2061a129590 rdf:first N8abf6742f1c640ebb048e480023f1084
100 rdf:rest rdf:nil
101 Ndee0c084c0dc43199c4b00ce7a7c1231 rdf:first sg:person.012320111457.74
102 rdf:rest Nb9677aa0b6784abba90c145cede9834f
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
107 schema:name Data Format
108 rdf:type schema:DefinedTerm
109 sg:person.012320111457.74 schema:affiliation grid-institutes:grid.189504.1
110 schema:familyName Canetti
111 schema:givenName Ran
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74
113 rdf:type schema:Person
114 sg:person.014073524511.68 schema:affiliation grid-institutes:grid.189504.1
115 schema:familyName Paneth
116 schema:givenName Omer
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68
118 rdf:type schema:Person
119 sg:person.015074540743.62 schema:affiliation grid-institutes:grid.419815.0
120 schema:familyName Kalai
121 schema:givenName Yael Tauman
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074540743.62
123 rdf:type schema:Person
124 sg:person.016302552357.74 schema:affiliation grid-institutes:grid.12136.37
125 schema:familyName Bitansky
126 schema:givenName Nir
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016302552357.74
128 rdf:type schema:Person
129 grid-institutes:grid.12136.37 schema:alternateName Tel Aviv University, Tel Aviv, Israel
130 schema:name Tel Aviv University, Tel Aviv, Israel
131 rdf:type schema:Organization
132 grid-institutes:grid.189504.1 schema:alternateName Boston University, Boston, MA, USA
133 schema:name Boston University, Boston, MA, USA
134 Tel Aviv University, Tel Aviv, Israel
135 rdf:type schema:Organization
136 grid-institutes:grid.419815.0 schema:alternateName Microsoft Research New England, Cambridge, MA, USA
137 schema:name Microsoft Research New England, Cambridge, MA, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...