Ontology type: schema:Chapter Open Access: True
2014
AUTHORSRan Canetti , Abhishek Jain , Omer Paneth
ABSTRACTThe traditional setting for concurrent zero knowledge considers a server that proves a statement in zero-knowledge to multiple clients in multiple concurrent sessions, where the server’s actions in a session are independent of all other sessions. Persiano and Visconti [ICALP 05] show how keeping a limited amount of global state across sessions allows the server to significantly reduce the overall complexity while retaining the ability to interact concurrently with an unbounded number of clients. Specifically, they show a protocol that has only slightly super-constant number of rounds; however the communication complexity in each session of their protocol depends on the number of other sessions and has no a-priori bound. This has the drawback that the client has no way to know in advance the amount of resources required for completing a session of the protocol up to the moment where the session is completed.We show a protocol that does not have this drawback. Specifically, in our protocol the client obtains a bound on the communication complexity of each session at the start of the session. Additionally the protocol is constant-rounds. Our protocols is fully concurrent, and assumes only collision-resistant hash functions. The proof requires considerably different techniques than those of Persiano and Visconti. Our main technical tool is an adaptation of the “committed-simulator” technique of Deng et. al [FOCS 09]. More... »
PAGES337-350
Advances in Cryptology – CRYPTO 2014
ISBN
978-3-662-44380-4
978-3-662-44381-1
http://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_19
DOIhttp://dx.doi.org/10.1007/978-3-662-44381-1_19
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1051810001
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Tel-Aviv University, Israel",
"id": "http://www.grid.ac/institutes/grid.12136.37",
"name": [
"Boston University, MA, USA",
"Tel-Aviv University, Israel"
],
"type": "Organization"
},
"familyName": "Canetti",
"givenName": "Ran",
"id": "sg:person.012320111457.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "MIT, Cambridge, MA, USA",
"id": "http://www.grid.ac/institutes/grid.116068.8",
"name": [
"Boston University, MA, USA",
"MIT, Cambridge, MA, USA"
],
"type": "Organization"
},
"familyName": "Jain",
"givenName": "Abhishek",
"id": "sg:person.010077714651.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077714651.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Boston University, MA, USA",
"id": "http://www.grid.ac/institutes/grid.189504.1",
"name": [
"Boston University, MA, USA"
],
"type": "Organization"
},
"familyName": "Paneth",
"givenName": "Omer",
"id": "sg:person.014073524511.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68"
],
"type": "Person"
}
],
"datePublished": "2014",
"datePublishedReg": "2014-01-01",
"description": "The traditional setting for concurrent zero knowledge considers a server that proves a statement in zero-knowledge to multiple clients in multiple concurrent sessions, where the server\u2019s actions in a session are independent of all other sessions. Persiano and Visconti [ICALP 05] show how keeping a limited amount of global state across sessions allows the server to significantly reduce the overall complexity while retaining the ability to interact concurrently with an unbounded number of clients. Specifically, they show a protocol that has only slightly super-constant number of rounds; however the communication complexity in each session of their protocol depends on the number of other sessions and has no a-priori bound. This has the drawback that the client has no way to know in advance the amount of resources required for completing a session of the protocol up to the moment where the session is completed.We show a protocol that does not have this drawback. Specifically, in our protocol the client obtains a bound on the communication complexity of each session at the start of the session. Additionally the protocol is constant-rounds. Our protocols is fully concurrent, and assumes only collision-resistant hash functions. The proof requires considerably different techniques than those of Persiano and Visconti. Our main technical tool is an adaptation of the \u201ccommitted-simulator\u201d technique of Deng et. al [FOCS 09].",
"editor": [
{
"familyName": "Garay",
"givenName": "Juan A.",
"type": "Person"
},
{
"familyName": "Gennaro",
"givenName": "Rosario",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-662-44381-1_19",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-662-44380-4",
"978-3-662-44381-1"
],
"name": "Advances in Cryptology \u2013 CRYPTO 2014",
"type": "Book"
},
"keywords": [
"zero-knowledge",
"communication complexity",
"Concurrent Zero-Knowledge",
"multiple concurrent sessions",
"collision-resistant hash functions",
"super-constant number",
"multiple clients",
"amount of resources",
"hash function",
"server actions",
"constant rounds",
"unbounded number",
"concurrent sessions",
"Persiano",
"overall complexity",
"server",
"global state",
"complexity",
"clients",
"protocol",
"technical tools",
"traditional settings",
"drawbacks",
"different techniques",
"technique",
"main technical tool",
"knowledge",
"resources",
"tool",
"proof",
"number",
"bounds",
"Visconti",
"rounds",
"sessions",
"Deng et",
"way",
"amount",
"advances",
"adaptation",
"state",
"ability",
"statements",
"setting",
"action",
"moment",
"function",
"start",
"et",
"al"
],
"name": "Client-Server Concurrent Zero Knowledge with Constant Rounds and Guaranteed Complexity",
"pagination": "337-350",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1051810001"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-662-44381-1_19"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-662-44381-1_19",
"https://app.dimensions.ai/details/publication/pub.1051810001"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_102.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-662-44381-1_19"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_19'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_19'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_19'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-44381-1_19'
This table displays all metadata directly associated to this object as RDF triples.
137 TRIPLES
23 PREDICATES
76 URIs
69 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-662-44381-1_19 | schema:about | anzsrc-for:17 |
2 | ″ | ″ | anzsrc-for:1701 |
3 | ″ | schema:author | N4d25ef3e40c4422faaedc6f1f648a185 |
4 | ″ | schema:datePublished | 2014 |
5 | ″ | schema:datePublishedReg | 2014-01-01 |
6 | ″ | schema:description | The traditional setting for concurrent zero knowledge considers a server that proves a statement in zero-knowledge to multiple clients in multiple concurrent sessions, where the server’s actions in a session are independent of all other sessions. Persiano and Visconti [ICALP 05] show how keeping a limited amount of global state across sessions allows the server to significantly reduce the overall complexity while retaining the ability to interact concurrently with an unbounded number of clients. Specifically, they show a protocol that has only slightly super-constant number of rounds; however the communication complexity in each session of their protocol depends on the number of other sessions and has no a-priori bound. This has the drawback that the client has no way to know in advance the amount of resources required for completing a session of the protocol up to the moment where the session is completed.We show a protocol that does not have this drawback. Specifically, in our protocol the client obtains a bound on the communication complexity of each session at the start of the session. Additionally the protocol is constant-rounds. Our protocols is fully concurrent, and assumes only collision-resistant hash functions. The proof requires considerably different techniques than those of Persiano and Visconti. Our main technical tool is an adaptation of the “committed-simulator” technique of Deng et. al [FOCS 09]. |
7 | ″ | schema:editor | N02a7f549a9734e96ac09b61875b9b1c7 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Nc673e216e1a64936904087db7b276bd4 |
12 | ″ | schema:keywords | Concurrent Zero-Knowledge |
13 | ″ | ″ | Deng et |
14 | ″ | ″ | Persiano |
15 | ″ | ″ | Visconti |
16 | ″ | ″ | ability |
17 | ″ | ″ | action |
18 | ″ | ″ | adaptation |
19 | ″ | ″ | advances |
20 | ″ | ″ | al |
21 | ″ | ″ | amount |
22 | ″ | ″ | amount of resources |
23 | ″ | ″ | bounds |
24 | ″ | ″ | clients |
25 | ″ | ″ | collision-resistant hash functions |
26 | ″ | ″ | communication complexity |
27 | ″ | ″ | complexity |
28 | ″ | ″ | concurrent sessions |
29 | ″ | ″ | constant rounds |
30 | ″ | ″ | different techniques |
31 | ″ | ″ | drawbacks |
32 | ″ | ″ | et |
33 | ″ | ″ | function |
34 | ″ | ″ | global state |
35 | ″ | ″ | hash function |
36 | ″ | ″ | knowledge |
37 | ″ | ″ | main technical tool |
38 | ″ | ″ | moment |
39 | ″ | ″ | multiple clients |
40 | ″ | ″ | multiple concurrent sessions |
41 | ″ | ″ | number |
42 | ″ | ″ | overall complexity |
43 | ″ | ″ | proof |
44 | ″ | ″ | protocol |
45 | ″ | ″ | resources |
46 | ″ | ″ | rounds |
47 | ″ | ″ | server |
48 | ″ | ″ | server actions |
49 | ″ | ″ | sessions |
50 | ″ | ″ | setting |
51 | ″ | ″ | start |
52 | ″ | ″ | state |
53 | ″ | ″ | statements |
54 | ″ | ″ | super-constant number |
55 | ″ | ″ | technical tools |
56 | ″ | ″ | technique |
57 | ″ | ″ | tool |
58 | ″ | ″ | traditional settings |
59 | ″ | ″ | unbounded number |
60 | ″ | ″ | way |
61 | ″ | ″ | zero-knowledge |
62 | ″ | schema:name | Client-Server Concurrent Zero Knowledge with Constant Rounds and Guaranteed Complexity |
63 | ″ | schema:pagination | 337-350 |
64 | ″ | schema:productId | N601bf13c84d14b909c349fade85c793a |
65 | ″ | ″ | N7f2dd99ac3ac4e8ca38a25985f938a34 |
66 | ″ | schema:publisher | Na0bc9452facd4cc4bc88d9b89e9d7c68 |
67 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051810001 |
68 | ″ | ″ | https://doi.org/10.1007/978-3-662-44381-1_19 |
69 | ″ | schema:sdDatePublished | 2022-06-01T22:26 |
70 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
71 | ″ | schema:sdPublisher | N6a1f51041a9c438cb1c31ef1739f2aad |
72 | ″ | schema:url | https://doi.org/10.1007/978-3-662-44381-1_19 |
73 | ″ | sgo:license | sg:explorer/license/ |
74 | ″ | sgo:sdDataset | chapters |
75 | ″ | rdf:type | schema:Chapter |
76 | N02a7f549a9734e96ac09b61875b9b1c7 | rdf:first | Nddb2746227a0461ba1837db25f5301f8 |
77 | ″ | rdf:rest | Nd511f3c5ec4243e8875feb56d5c0c39c |
78 | N1aeeea3eb78c4025a555465f7c5f5125 | schema:familyName | Gennaro |
79 | ″ | schema:givenName | Rosario |
80 | ″ | rdf:type | schema:Person |
81 | N1d9c3f0ed7914713aeb9b48871ddaf9f | rdf:first | sg:person.014073524511.68 |
82 | ″ | rdf:rest | rdf:nil |
83 | N417f5bd2db5a40fa80e936bfe9fea9be | rdf:first | sg:person.010077714651.46 |
84 | ″ | rdf:rest | N1d9c3f0ed7914713aeb9b48871ddaf9f |
85 | N4d25ef3e40c4422faaedc6f1f648a185 | rdf:first | sg:person.012320111457.74 |
86 | ″ | rdf:rest | N417f5bd2db5a40fa80e936bfe9fea9be |
87 | N601bf13c84d14b909c349fade85c793a | schema:name | doi |
88 | ″ | schema:value | 10.1007/978-3-662-44381-1_19 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N6a1f51041a9c438cb1c31ef1739f2aad | schema:name | Springer Nature - SN SciGraph project |
91 | ″ | rdf:type | schema:Organization |
92 | N7f2dd99ac3ac4e8ca38a25985f938a34 | schema:name | dimensions_id |
93 | ″ | schema:value | pub.1051810001 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | Na0bc9452facd4cc4bc88d9b89e9d7c68 | schema:name | Springer Nature |
96 | ″ | rdf:type | schema:Organisation |
97 | Nc673e216e1a64936904087db7b276bd4 | schema:isbn | 978-3-662-44380-4 |
98 | ″ | ″ | 978-3-662-44381-1 |
99 | ″ | schema:name | Advances in Cryptology – CRYPTO 2014 |
100 | ″ | rdf:type | schema:Book |
101 | Nd511f3c5ec4243e8875feb56d5c0c39c | rdf:first | N1aeeea3eb78c4025a555465f7c5f5125 |
102 | ″ | rdf:rest | rdf:nil |
103 | Nddb2746227a0461ba1837db25f5301f8 | schema:familyName | Garay |
104 | ″ | schema:givenName | Juan A. |
105 | ″ | rdf:type | schema:Person |
106 | anzsrc-for:17 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Psychology and Cognitive Sciences |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:1701 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Psychology |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | sg:person.010077714651.46 | schema:affiliation | grid-institutes:grid.116068.8 |
113 | ″ | schema:familyName | Jain |
114 | ″ | schema:givenName | Abhishek |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077714651.46 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.012320111457.74 | schema:affiliation | grid-institutes:grid.12136.37 |
118 | ″ | schema:familyName | Canetti |
119 | ″ | schema:givenName | Ran |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012320111457.74 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.014073524511.68 | schema:affiliation | grid-institutes:grid.189504.1 |
123 | ″ | schema:familyName | Paneth |
124 | ″ | schema:givenName | Omer |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68 |
126 | ″ | rdf:type | schema:Person |
127 | grid-institutes:grid.116068.8 | schema:alternateName | MIT, Cambridge, MA, USA |
128 | ″ | schema:name | Boston University, MA, USA |
129 | ″ | ″ | MIT, Cambridge, MA, USA |
130 | ″ | rdf:type | schema:Organization |
131 | grid-institutes:grid.12136.37 | schema:alternateName | Tel-Aviv University, Israel |
132 | ″ | schema:name | Boston University, MA, USA |
133 | ″ | ″ | Tel-Aviv University, Israel |
134 | ″ | rdf:type | schema:Organization |
135 | grid-institutes:grid.189504.1 | schema:alternateName | Boston University, MA, USA |
136 | ″ | schema:name | Boston University, MA, USA |
137 | ″ | rdf:type | schema:Organization |