Many-Objective Problems: Challenges and Methods View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Antonio López Jaimes , Carlos A. Coello Coello

ABSTRACT

This chapter presents a short review of the state-of-the-art efforts for understanding and solving problems with a large number of objectives (usually known as many-objective optimization problems, MOP s). The first part of the chapter presents the current studies aimed at discovering the sources that make a multiobjective optimization problem (MOP) harder when more objectives are added, degrading in this way, the performance of a multiobjective evolutionary algorithm (MOEA). Next, some of the most relevant techniques designed to deal with MOPs are presented and categorized. More... »

PAGES

1033-1046

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-43505-2_51

DOI

http://dx.doi.org/10.1007/978-3-662-43505-2_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048090192


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dep. Computaci\u00f3n, CINVESTAV-IPN, Av. Instituto Polit\u00e9cnico Nacional No. 2508, Col. San Pedro Zacatenco, D.F. 07300, M\u00e9xico, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Dep. Computaci\u00f3n, CINVESTAV-IPN, Av. Instituto Polit\u00e9cnico Nacional No. 2508, Col. San Pedro Zacatenco, D.F. 07300, M\u00e9xico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez Jaimes", 
        "givenName": "Antonio", 
        "id": "sg:person.015626274463.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015626274463.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dep. Computaci\u00f3n, CINVESTAV-IPN, Av. Instituto Polit\u00e9cnico Nacional No. 2508, Col. San Pedro Zacatenco, D.F. 07300, M\u00e9xico, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Dep. Computaci\u00f3n, CINVESTAV-IPN, Av. Instituto Polit\u00e9cnico Nacional No. 2508, Col. San Pedro Zacatenco, D.F. 07300, M\u00e9xico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello Coello", 
        "givenName": "Carlos A.", 
        "id": "sg:person.01345625161.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345625161.61"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "This chapter presents a\u00a0short review of the state-of-the-art efforts for understanding and solving problems with a\u00a0large number of objectives (usually known as many-objective optimization problems, MOP s). The first part of the chapter presents the current studies aimed at discovering the sources that make a\u00a0multiobjective optimization problem (MOP) harder when more objectives are added, degrading in this way, the performance of a\u00a0multiobjective evolutionary algorithm (MOEA). Next, some of the most relevant techniques designed to deal with MOPs are presented and categorized.", 
    "editor": [
      {
        "familyName": "Kacprzyk", 
        "givenName": "Janusz", 
        "type": "Person"
      }, 
      {
        "familyName": "Pedrycz", 
        "givenName": "Witold", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-43505-2_51", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-662-43504-5", 
        "978-3-662-43505-2"
      ], 
      "name": "Springer Handbook of Computational Intelligence", 
      "type": "Book"
    }, 
    "keywords": [
      "multiobjective optimization problem", 
      "multiobjective evolutionary algorithm", 
      "optimization problem", 
      "more objectives", 
      "objective problems", 
      "evolutionary algorithm", 
      "problem", 
      "first part", 
      "large number", 
      "algorithm", 
      "relevant techniques", 
      "short review", 
      "objective", 
      "chapter", 
      "performance", 
      "technique", 
      "number", 
      "way", 
      "state", 
      "efforts", 
      "part", 
      "challenges", 
      "source", 
      "understanding", 
      "study", 
      "review", 
      "current study", 
      "method", 
      "art efforts"
    ], 
    "name": "Many-Objective Problems: Challenges and Methods", 
    "pagination": "1033-1046", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048090192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-43505-2_51"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-43505-2_51", 
      "https://app.dimensions.ai/details/publication/pub.1048090192"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_206.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-43505-2_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-43505-2_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-43505-2_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-43505-2_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-43505-2_51'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      54 URIs      47 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-43505-2_51 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N91785306353d4e29ab268be52d4b60e9
4 schema:datePublished 2015
5 schema:datePublishedReg 2015-01-01
6 schema:description This chapter presents a short review of the state-of-the-art efforts for understanding and solving problems with a large number of objectives (usually known as many-objective optimization problems, MOP s). The first part of the chapter presents the current studies aimed at discovering the sources that make a multiobjective optimization problem (MOP) harder when more objectives are added, degrading in this way, the performance of a multiobjective evolutionary algorithm (MOEA). Next, some of the most relevant techniques designed to deal with MOPs are presented and categorized.
7 schema:editor Nc9d3cdbfa34b4fd1bce30805392615d1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf03c760e80994cc3b3cd4a663c9b96f9
12 schema:keywords algorithm
13 art efforts
14 challenges
15 chapter
16 current study
17 efforts
18 evolutionary algorithm
19 first part
20 large number
21 method
22 more objectives
23 multiobjective evolutionary algorithm
24 multiobjective optimization problem
25 number
26 objective
27 objective problems
28 optimization problem
29 part
30 performance
31 problem
32 relevant techniques
33 review
34 short review
35 source
36 state
37 study
38 technique
39 understanding
40 way
41 schema:name Many-Objective Problems: Challenges and Methods
42 schema:pagination 1033-1046
43 schema:productId N420be83d372549459df3c6a24fa26449
44 N87ed7e4afea249d791da285e238c1c0a
45 schema:publisher N20bf7349b4bc48ff9c91e721b790d7aa
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048090192
47 https://doi.org/10.1007/978-3-662-43505-2_51
48 schema:sdDatePublished 2021-11-01T18:50
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N96f9a11082ac4504b4c831891e52ec0b
51 schema:url https://doi.org/10.1007/978-3-662-43505-2_51
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N1e9d971e4bb54044849c744b78f5025e rdf:first Ned80d3490dbd4ea3a2627a7171e55714
56 rdf:rest rdf:nil
57 N20bf7349b4bc48ff9c91e721b790d7aa schema:name Springer Nature
58 rdf:type schema:Organisation
59 N420be83d372549459df3c6a24fa26449 schema:name doi
60 schema:value 10.1007/978-3-662-43505-2_51
61 rdf:type schema:PropertyValue
62 N779379c72072443e9b50b16defc7332c rdf:first sg:person.01345625161.61
63 rdf:rest rdf:nil
64 N829dcddd47c84813a12197e1bc9ad527 schema:familyName Kacprzyk
65 schema:givenName Janusz
66 rdf:type schema:Person
67 N87ed7e4afea249d791da285e238c1c0a schema:name dimensions_id
68 schema:value pub.1048090192
69 rdf:type schema:PropertyValue
70 N91785306353d4e29ab268be52d4b60e9 rdf:first sg:person.015626274463.17
71 rdf:rest N779379c72072443e9b50b16defc7332c
72 N96f9a11082ac4504b4c831891e52ec0b schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nc9d3cdbfa34b4fd1bce30805392615d1 rdf:first N829dcddd47c84813a12197e1bc9ad527
75 rdf:rest N1e9d971e4bb54044849c744b78f5025e
76 Ned80d3490dbd4ea3a2627a7171e55714 schema:familyName Pedrycz
77 schema:givenName Witold
78 rdf:type schema:Person
79 Nf03c760e80994cc3b3cd4a663c9b96f9 schema:isbn 978-3-662-43504-5
80 978-3-662-43505-2
81 schema:name Springer Handbook of Computational Intelligence
82 rdf:type schema:Book
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
87 schema:name Numerical and Computational Mathematics
88 rdf:type schema:DefinedTerm
89 sg:person.01345625161.61 schema:affiliation grid-institutes:grid.418275.d
90 schema:familyName Coello Coello
91 schema:givenName Carlos A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345625161.61
93 rdf:type schema:Person
94 sg:person.015626274463.17 schema:affiliation grid-institutes:grid.418275.d
95 schema:familyName López Jaimes
96 schema:givenName Antonio
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015626274463.17
98 rdf:type schema:Person
99 grid-institutes:grid.418275.d schema:alternateName Dep. Computación, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, D.F. 07300, México, Mexico
100 schema:name Dep. Computación, CINVESTAV-IPN, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, D.F. 07300, México, Mexico
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...