Montgomery Multiplication Using Vector Instructions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Joppe W. Bos , Peter L. Montgomery , Daniel Shumow , Gregory M. Zaverucha

ABSTRACT

In this paper we present a parallel approach to compute interleaved Montgomery multiplication. This approach is particularly suitable to be computed on 2-way single instruction, multiple data platforms as can be found on most modern computer architectures in the form of vector instruction set extensions. We have implemented this approach for tablet devices which run the x86 architecture (Intel Atom Z2760) using SSE2 instructions as well as devices which run on the ARM platform (Qualcomm MSM8960, NVIDIA Tegra 3 and 4) using NEON instructions. When instantiating modular exponentiation with this parallel version of Montgomery multiplication we observed a performance increase of more than a factor of 1.5 compared to the sequential implementation in OpenSSL for the classical arithmetic logic unit on the Atom platform for 2048-bit moduli. More... »

PAGES

471-489

Book

TITLE

Selected Areas in Cryptography -- SAC 2013

ISBN

978-3-662-43413-0
978-3-662-43414-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-43414-7_24

DOI

http://dx.doi.org/10.1007/978-3-662-43414-7_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006581738


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research, Redmond, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bos", 
        "givenName": "Joppe W.", 
        "id": "sg:person.011356726653.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356726653.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research, Redmond, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montgomery", 
        "givenName": "Peter L.", 
        "id": "sg:person.014154374167.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014154374167.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research, Redmond, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shumow", 
        "givenName": "Daniel", 
        "id": "sg:person.011573245111.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011573245111.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research, Redmond, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaverucha", 
        "givenName": "Gregory M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-47555-9_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005687189", 
          "https://doi.org/10.1007/3-540-47555-9_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47555-9_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005687189", 
          "https://doi.org/10.1007/3-540-47555-9_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47555-9_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009396232", 
          "https://doi.org/10.1007/3-540-47555-9_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47555-9_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009396232", 
          "https://doi.org/10.1007/3-540-47555-9_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-32009-5_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010313831", 
          "https://doi.org/10.1007/978-3-642-32009-5_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/359340.359342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013337011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04852-9_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017542132", 
          "https://doi.org/10.1007/978-3-319-04852-9_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2068816.2068856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020750210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04159-4_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022688992", 
          "https://doi.org/10.1007/978-3-642-04159-4_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-31662-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032931092", 
          "https://doi.org/10.1007/978-3-642-31662-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1985-0777282-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041482767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11545262_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044926321", 
          "https://doi.org/10.1007/11545262_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11545262_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044926321", 
          "https://doi.org/10.1007/11545262_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02384-2_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051804249", 
          "https://doi.org/10.1007/978-3-642-02384-2_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/12.709376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061088861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/40.502403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061168196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pgec.1964.263777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061435184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2004.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061533917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2007.70793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061534507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tec.1959.5219515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061588149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/sj.294.0526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063184115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342003017002004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063976968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1094342003017002004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063976968"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "In this paper we present a parallel approach to compute interleaved Montgomery multiplication. This approach is particularly suitable to be computed on 2-way single instruction, multiple data platforms as can be found on most modern computer architectures in the form of vector instruction set extensions. We have implemented this approach for tablet devices which run the x86 architecture (Intel Atom Z2760) using SSE2 instructions as well as devices which run on the ARM platform (Qualcomm MSM8960, NVIDIA Tegra 3 and 4) using NEON instructions. When instantiating modular exponentiation with this parallel version of Montgomery multiplication we observed a performance increase of more than a factor of 1.5 compared to the sequential implementation in OpenSSL for the classical arithmetic logic unit on the Atom platform for 2048-bit moduli.", 
    "editor": [
      {
        "familyName": "Lange", 
        "givenName": "Tanja", 
        "type": "Person"
      }, 
      {
        "familyName": "Lauter", 
        "givenName": "Kristin", 
        "type": "Person"
      }, 
      {
        "familyName": "Lison\u011bk", 
        "givenName": "Petr", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-43414-7_24", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-662-43413-0", 
        "978-3-662-43414-7"
      ], 
      "name": "Selected Areas in Cryptography -- SAC 2013", 
      "type": "Book"
    }, 
    "name": "Montgomery Multiplication Using Vector Instructions", 
    "pagination": "471-489", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-43414-7_24"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1f59673d6e5fbad8678a3fdb414b35816ad4e2c67a7d2620402c7de00f727e2f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006581738"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-43414-7_24", 
      "https://app.dimensions.ai/details/publication/pub.1006581738"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000247.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-43414-7_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-43414-7_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-43414-7_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-43414-7_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-43414-7_24'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      23 PREDICATES      46 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-43414-7_24 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N91b26380427e42ea81459570e7ec4473
4 schema:citation sg:pub.10.1007/11545262_6
5 sg:pub.10.1007/3-540-47555-9_16
6 sg:pub.10.1007/3-540-47555-9_43
7 sg:pub.10.1007/978-3-319-04852-9_1
8 sg:pub.10.1007/978-3-642-02384-2_22
9 sg:pub.10.1007/978-3-642-04159-4_3
10 sg:pub.10.1007/978-3-642-31662-3_9
11 sg:pub.10.1007/978-3-642-32009-5_37
12 https://doi.org/10.1090/s0025-5718-1985-0777282-x
13 https://doi.org/10.1109/12.709376
14 https://doi.org/10.1109/40.502403
15 https://doi.org/10.1109/pgec.1964.263777
16 https://doi.org/10.1109/tc.2004.100
17 https://doi.org/10.1109/tc.2007.70793
18 https://doi.org/10.1109/tec.1959.5219515
19 https://doi.org/10.1145/2068816.2068856
20 https://doi.org/10.1145/359340.359342
21 https://doi.org/10.1147/sj.294.0526
22 https://doi.org/10.1177/1094342003017002004
23 schema:datePublished 2014
24 schema:datePublishedReg 2014-01-01
25 schema:description In this paper we present a parallel approach to compute interleaved Montgomery multiplication. This approach is particularly suitable to be computed on 2-way single instruction, multiple data platforms as can be found on most modern computer architectures in the form of vector instruction set extensions. We have implemented this approach for tablet devices which run the x86 architecture (Intel Atom Z2760) using SSE2 instructions as well as devices which run on the ARM platform (Qualcomm MSM8960, NVIDIA Tegra 3 and 4) using NEON instructions. When instantiating modular exponentiation with this parallel version of Montgomery multiplication we observed a performance increase of more than a factor of 1.5 compared to the sequential implementation in OpenSSL for the classical arithmetic logic unit on the Atom platform for 2048-bit moduli.
26 schema:editor Nf82e794544404e089198cc232882ecf4
27 schema:genre chapter
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N63710b4dfc5f4da5847b5e8152d20621
31 schema:name Montgomery Multiplication Using Vector Instructions
32 schema:pagination 471-489
33 schema:productId N152c0dee8a2d466e8e11110d35f36f90
34 N8518effb0e9141c9afdd1b04a36650b4
35 Ne0b98523b0cd4568b002e0a19dd7a6d0
36 schema:publisher N76911f024cd040a1b51982a87c83b77d
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006581738
38 https://doi.org/10.1007/978-3-662-43414-7_24
39 schema:sdDatePublished 2019-04-15T20:59
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Ne7e97d3f9eac434194a454b1c6492c10
42 schema:url http://link.springer.com/10.1007/978-3-662-43414-7_24
43 sgo:license sg:explorer/license/
44 sgo:sdDataset chapters
45 rdf:type schema:Chapter
46 N134bdcbe0f86404dbe631cbb3e07d0bc rdf:first Nb1c018d41edc43ebbc9c3847b53ae57a
47 rdf:rest N41e69f94415145c5b1b04ce253e96824
48 N152c0dee8a2d466e8e11110d35f36f90 schema:name dimensions_id
49 schema:value pub.1006581738
50 rdf:type schema:PropertyValue
51 N35703ef97e7a466caaadd66deb7c0bd2 schema:familyName Lisoněk
52 schema:givenName Petr
53 rdf:type schema:Person
54 N35ea3ce8b9b8493582e61eca34ed85fe schema:affiliation https://www.grid.ac/institutes/grid.419815.0
55 schema:familyName Zaverucha
56 schema:givenName Gregory M.
57 rdf:type schema:Person
58 N41e69f94415145c5b1b04ce253e96824 rdf:first N35703ef97e7a466caaadd66deb7c0bd2
59 rdf:rest rdf:nil
60 N4fb3ab4255f14fbe933becf5dfb42594 schema:familyName Lange
61 schema:givenName Tanja
62 rdf:type schema:Person
63 N63710b4dfc5f4da5847b5e8152d20621 schema:isbn 978-3-662-43413-0
64 978-3-662-43414-7
65 schema:name Selected Areas in Cryptography -- SAC 2013
66 rdf:type schema:Book
67 N76911f024cd040a1b51982a87c83b77d schema:location Berlin, Heidelberg
68 schema:name Springer Berlin Heidelberg
69 rdf:type schema:Organisation
70 N8518effb0e9141c9afdd1b04a36650b4 schema:name readcube_id
71 schema:value 1f59673d6e5fbad8678a3fdb414b35816ad4e2c67a7d2620402c7de00f727e2f
72 rdf:type schema:PropertyValue
73 N8a8f207bff8e4551af07273a98c9efe3 rdf:first N35ea3ce8b9b8493582e61eca34ed85fe
74 rdf:rest rdf:nil
75 N91b26380427e42ea81459570e7ec4473 rdf:first sg:person.011356726653.68
76 rdf:rest Nc2a2a9140eac4e9e84d7416862c9a380
77 N927f29df484a49b9b6cde4ce7503c05a rdf:first sg:person.011573245111.29
78 rdf:rest N8a8f207bff8e4551af07273a98c9efe3
79 Nb1c018d41edc43ebbc9c3847b53ae57a schema:familyName Lauter
80 schema:givenName Kristin
81 rdf:type schema:Person
82 Nc2a2a9140eac4e9e84d7416862c9a380 rdf:first sg:person.014154374167.55
83 rdf:rest N927f29df484a49b9b6cde4ce7503c05a
84 Ne0b98523b0cd4568b002e0a19dd7a6d0 schema:name doi
85 schema:value 10.1007/978-3-662-43414-7_24
86 rdf:type schema:PropertyValue
87 Ne7e97d3f9eac434194a454b1c6492c10 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nf82e794544404e089198cc232882ecf4 rdf:first N4fb3ab4255f14fbe933becf5dfb42594
90 rdf:rest N134bdcbe0f86404dbe631cbb3e07d0bc
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
95 schema:name Computer Software
96 rdf:type schema:DefinedTerm
97 sg:person.011356726653.68 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
98 schema:familyName Bos
99 schema:givenName Joppe W.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356726653.68
101 rdf:type schema:Person
102 sg:person.011573245111.29 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
103 schema:familyName Shumow
104 schema:givenName Daniel
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011573245111.29
106 rdf:type schema:Person
107 sg:person.014154374167.55 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
108 schema:familyName Montgomery
109 schema:givenName Peter L.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014154374167.55
111 rdf:type schema:Person
112 sg:pub.10.1007/11545262_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044926321
113 https://doi.org/10.1007/11545262_6
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/3-540-47555-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005687189
116 https://doi.org/10.1007/3-540-47555-9_16
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/3-540-47555-9_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009396232
119 https://doi.org/10.1007/3-540-47555-9_43
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-319-04852-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017542132
122 https://doi.org/10.1007/978-3-319-04852-9_1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-642-02384-2_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051804249
125 https://doi.org/10.1007/978-3-642-02384-2_22
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-642-04159-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022688992
128 https://doi.org/10.1007/978-3-642-04159-4_3
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-642-31662-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032931092
131 https://doi.org/10.1007/978-3-642-31662-3_9
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-642-32009-5_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010313831
134 https://doi.org/10.1007/978-3-642-32009-5_37
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1090/s0025-5718-1985-0777282-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041482767
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/12.709376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061088861
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/40.502403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061168196
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/pgec.1964.263777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061435184
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tc.2004.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061533917
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tc.2007.70793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534507
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tec.1959.5219515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061588149
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/2068816.2068856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020750210
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/359340.359342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013337011
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1147/sj.294.0526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063184115
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1177/1094342003017002004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063976968
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
159 schema:name Microsoft Research, Redmond, USA
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...