A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

H. David Sheets , Keonho Kim , Charles E. Mitchell

ABSTRACT

Landmark based geometric morphometrics has developed as a powerful set of statistical and visual tools for the study of the covariance patterns of organismal shape change with a range of variables or factors. The approach is limited in the kinds of shape information accessible to it, however, by the need to employ discrete landmarks as the basis for comparison. In particular, curves and complex outlines are difficult to address using strictly landmark-based methods. Information about curves may be incorporated into the study of shape by the use of semi-landmark methods, which allow information about curved surfaces to be incorporated into the framework of landmark-based geometric morphometrics. We present a discussion of several software and statistical approaches needed to carry out combined landmark and semi-landmark analysis. In particular, we demonstrate several approaches to semi-landmark alignment (including the “edgewarp” method) and compare these to standard landmark based methods utilizing a regression analysis of the Ordovician trilobite Triarthrus becki. Abundant landmarks on the cranidium of T. becki allow landmark methods to represent the shape of that structure effectively, making it a good test case for combined landmark and semi-landmark methods. We verify that patterns of ontogenetic change implied by regression models using varying combinations of landmark and semi-landmark information are consistent with one another. Thus, semi-landmark methods and standard landmark based geometric morphometric methods yield commensurate information about this ontogenetic shape transformation. These results suggests that semi-landmark methods show substantial promise for rigorously testing hypotheses that involve the comparison of shapes when an adequate set of landmarks is not available. More... »

PAGES

67-82

Book

TITLE

Morphometrics

ISBN

978-3-642-05980-3
978-3-662-08865-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6

DOI

http://dx.doi.org/10.1007/978-3-662-08865-4_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090867395


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dept. of Physics Canisius College"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheets", 
        "givenName": "H. David", 
        "id": "sg:person.0721202760.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721202760.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "SUNY at Buffalo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Keonho", 
        "id": "sg:person.011105546166.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011105546166.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "SUNY at Buffalo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitchell", 
        "givenName": "Charles E.", 
        "id": "sg:person.010744063106.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744063106.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-9083-2_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001898664", 
          "https://doi.org/10.1007/978-1-4757-9083-2_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-5347(93)90024-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011163732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003579900054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011805891", 
          "https://doi.org/10.1007/s003579900054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2001.0977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023796667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00899747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029192736", 
          "https://doi.org/10.1007/bf00899747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9083-2_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031182332", 
          "https://doi.org/10.1007/978-1-4757-9083-2_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1666/0094-8373(2002)028<0364:maooaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039365541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203165171.ch7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045234165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1997.0607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047908617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02291478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049977738", 
          "https://doi.org/10.1007/bf02291478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02291478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049977738", 
          "https://doi.org/10.1007/bf02291478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9083-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051479037", 
          "https://doi.org/10.1007/978-1-4757-9083-2_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01033230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341646", 
          "https://doi.org/10.1007/bf01033230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150119110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/106351598261094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2992207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070161844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511573064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664430"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Landmark based geometric morphometrics has developed as a powerful set of statistical and visual tools for the study of the covariance patterns of organismal shape change with a range of variables or factors. The approach is limited in the kinds of shape information accessible to it, however, by the need to employ discrete landmarks as the basis for comparison. In particular, curves and complex outlines are difficult to address using strictly landmark-based methods. Information about curves may be incorporated into the study of shape by the use of semi-landmark methods, which allow information about curved surfaces to be incorporated into the framework of landmark-based geometric morphometrics. We present a discussion of several software and statistical approaches needed to carry out combined landmark and semi-landmark analysis. In particular, we demonstrate several approaches to semi-landmark alignment (including the \u201cedgewarp\u201d method) and compare these to standard landmark based methods utilizing a regression analysis of the Ordovician trilobite Triarthrus becki. Abundant landmarks on the cranidium of T. becki allow landmark methods to represent the shape of that structure effectively, making it a good test case for combined landmark and semi-landmark methods. We verify that patterns of ontogenetic change implied by regression models using varying combinations of landmark and semi-landmark information are consistent with one another. Thus, semi-landmark methods and standard landmark based geometric morphometric methods yield commensurate information about this ontogenetic shape transformation. These results suggests that semi-landmark methods show substantial promise for rigorously testing hypotheses that involve the comparison of shapes when an adequate set of landmarks is not available.", 
    "editor": [
      {
        "familyName": "Elewa", 
        "givenName": "Ashraf M. T.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-08865-4_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-05980-3", 
        "978-3-662-08865-4"
      ], 
      "name": "Morphometrics", 
      "type": "Book"
    }, 
    "name": "A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki", 
    "pagination": "67-82", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-08865-4_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "08649335f82439bb3b6c5957595542a7a891703bc1f5ea9829077a7207ff0d0a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090867395"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-08865-4_6", 
      "https://app.dimensions.ai/details/publication/pub.1090867395"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-08865-4_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-08865-4_6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N7b7c19fa3475438e8fc2ee0c5895f9aa
4 schema:citation sg:pub.10.1007/978-1-4757-9083-2_13
5 sg:pub.10.1007/978-1-4757-9083-2_17
6 sg:pub.10.1007/978-1-4757-9083-2_18
7 sg:pub.10.1007/bf00899747
8 sg:pub.10.1007/bf01033230
9 sg:pub.10.1007/bf02291478
10 sg:pub.10.1007/s003579900054
11 https://doi.org/10.1006/cviu.1997.0607
12 https://doi.org/10.1006/nimg.2001.0977
13 https://doi.org/10.1016/0169-5347(93)90024-j
14 https://doi.org/10.1017/cbo9780511573064
15 https://doi.org/10.1080/10635150119110
16 https://doi.org/10.1080/106351598261094
17 https://doi.org/10.1201/9780203165171.ch7
18 https://doi.org/10.1666/0094-8373(2002)028<0364:maooaa>2.0.co;2
19 https://doi.org/10.2307/2992207
20 schema:datePublished 2004
21 schema:datePublishedReg 2004-01-01
22 schema:description Landmark based geometric morphometrics has developed as a powerful set of statistical and visual tools for the study of the covariance patterns of organismal shape change with a range of variables or factors. The approach is limited in the kinds of shape information accessible to it, however, by the need to employ discrete landmarks as the basis for comparison. In particular, curves and complex outlines are difficult to address using strictly landmark-based methods. Information about curves may be incorporated into the study of shape by the use of semi-landmark methods, which allow information about curved surfaces to be incorporated into the framework of landmark-based geometric morphometrics. We present a discussion of several software and statistical approaches needed to carry out combined landmark and semi-landmark analysis. In particular, we demonstrate several approaches to semi-landmark alignment (including the “edgewarp” method) and compare these to standard landmark based methods utilizing a regression analysis of the Ordovician trilobite Triarthrus becki. Abundant landmarks on the cranidium of T. becki allow landmark methods to represent the shape of that structure effectively, making it a good test case for combined landmark and semi-landmark methods. We verify that patterns of ontogenetic change implied by regression models using varying combinations of landmark and semi-landmark information are consistent with one another. Thus, semi-landmark methods and standard landmark based geometric morphometric methods yield commensurate information about this ontogenetic shape transformation. These results suggests that semi-landmark methods show substantial promise for rigorously testing hypotheses that involve the comparison of shapes when an adequate set of landmarks is not available.
23 schema:editor N3a540dd4f732434e8436372ca3a43152
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N7771bbb6f216401aa8f3acafc5a310f2
28 schema:name A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki
29 schema:pagination 67-82
30 schema:productId N7de4086dc3d2421dbd70c579d3638307
31 Nc4fc8a5931b844f7a7854c4fdff8237c
32 Nf3016a7276f9455ab3baa985889ac1e0
33 schema:publisher N51cf6d51061042c99ae325c7d46d9b52
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090867395
35 https://doi.org/10.1007/978-3-662-08865-4_6
36 schema:sdDatePublished 2019-04-15T19:13
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nd18b0a718d3f4a5c9fdda84b0c559544
39 schema:url http://link.springer.com/10.1007/978-3-662-08865-4_6
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N25d4919b1a144f66af67b4fc16c0fddc rdf:first sg:person.010744063106.46
44 rdf:rest rdf:nil
45 N3a540dd4f732434e8436372ca3a43152 rdf:first N5eb5ba212da445a69b1fe0d61c8a3cd7
46 rdf:rest rdf:nil
47 N51cf6d51061042c99ae325c7d46d9b52 schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 N5eb5ba212da445a69b1fe0d61c8a3cd7 schema:familyName Elewa
51 schema:givenName Ashraf M. T.
52 rdf:type schema:Person
53 N7771bbb6f216401aa8f3acafc5a310f2 schema:isbn 978-3-642-05980-3
54 978-3-662-08865-4
55 schema:name Morphometrics
56 rdf:type schema:Book
57 N7b7c19fa3475438e8fc2ee0c5895f9aa rdf:first sg:person.0721202760.15
58 rdf:rest N9c7f59cf620c4798b87b9a2134016673
59 N7de4086dc3d2421dbd70c579d3638307 schema:name doi
60 schema:value 10.1007/978-3-662-08865-4_6
61 rdf:type schema:PropertyValue
62 N9c7f59cf620c4798b87b9a2134016673 rdf:first sg:person.011105546166.55
63 rdf:rest N25d4919b1a144f66af67b4fc16c0fddc
64 Nc4fc8a5931b844f7a7854c4fdff8237c schema:name dimensions_id
65 schema:value pub.1090867395
66 rdf:type schema:PropertyValue
67 Nd18b0a718d3f4a5c9fdda84b0c559544 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Ne9b40cc045734f1296b14308d87c7362 schema:name Dept. of Physics Canisius College
70 rdf:type schema:Organization
71 Nf3016a7276f9455ab3baa985889ac1e0 schema:name readcube_id
72 schema:value 08649335f82439bb3b6c5957595542a7a891703bc1f5ea9829077a7207ff0d0a
73 rdf:type schema:PropertyValue
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
78 schema:name Statistics
79 rdf:type schema:DefinedTerm
80 sg:person.010744063106.46 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
81 schema:familyName Mitchell
82 schema:givenName Charles E.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744063106.46
84 rdf:type schema:Person
85 sg:person.011105546166.55 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
86 schema:familyName Kim
87 schema:givenName Keonho
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011105546166.55
89 rdf:type schema:Person
90 sg:person.0721202760.15 schema:affiliation Ne9b40cc045734f1296b14308d87c7362
91 schema:familyName Sheets
92 schema:givenName H. David
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721202760.15
94 rdf:type schema:Person
95 sg:pub.10.1007/978-1-4757-9083-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051479037
96 https://doi.org/10.1007/978-1-4757-9083-2_13
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-1-4757-9083-2_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031182332
99 https://doi.org/10.1007/978-1-4757-9083-2_17
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-1-4757-9083-2_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001898664
102 https://doi.org/10.1007/978-1-4757-9083-2_18
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf00899747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029192736
105 https://doi.org/10.1007/bf00899747
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01033230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052341646
108 https://doi.org/10.1007/bf01033230
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02291478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049977738
111 https://doi.org/10.1007/bf02291478
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s003579900054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011805891
114 https://doi.org/10.1007/s003579900054
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1006/cviu.1997.0607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047908617
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1006/nimg.2001.0977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023796667
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0169-5347(93)90024-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1011163732
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1017/cbo9780511573064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664430
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/10635150119110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369150
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/106351598261094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369886
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1201/9780203165171.ch7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045234165
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1666/0094-8373(2002)028<0364:maooaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039365541
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2307/2992207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070161844
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.273335.3 schema:alternateName University at Buffalo, State University of New York
135 schema:name SUNY at Buffalo
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...