A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

H. David Sheets , Keonho Kim , Charles E. Mitchell

ABSTRACT

Landmark based geometric morphometrics has developed as a powerful set of statistical and visual tools for the study of the covariance patterns of organismal shape change with a range of variables or factors. The approach is limited in the kinds of shape information accessible to it, however, by the need to employ discrete landmarks as the basis for comparison. In particular, curves and complex outlines are difficult to address using strictly landmark-based methods. Information about curves may be incorporated into the study of shape by the use of semi-landmark methods, which allow information about curved surfaces to be incorporated into the framework of landmark-based geometric morphometrics. We present a discussion of several software and statistical approaches needed to carry out combined landmark and semi-landmark analysis. In particular, we demonstrate several approaches to semi-landmark alignment (including the “edgewarp” method) and compare these to standard landmark based methods utilizing a regression analysis of the Ordovician trilobite Triarthrus becki. Abundant landmarks on the cranidium of T. becki allow landmark methods to represent the shape of that structure effectively, making it a good test case for combined landmark and semi-landmark methods. We verify that patterns of ontogenetic change implied by regression models using varying combinations of landmark and semi-landmark information are consistent with one another. Thus, semi-landmark methods and standard landmark based geometric morphometric methods yield commensurate information about this ontogenetic shape transformation. These results suggests that semi-landmark methods show substantial promise for rigorously testing hypotheses that involve the comparison of shapes when an adequate set of landmarks is not available. More... »

PAGES

67-82

Book

TITLE

Morphometrics

ISBN

978-3-642-05980-3
978-3-662-08865-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6

DOI

http://dx.doi.org/10.1007/978-3-662-08865-4_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090867395


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Dept. of Physics Canisius College"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheets", 
        "givenName": "H. David", 
        "id": "sg:person.0721202760.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721202760.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "SUNY at Buffalo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Keonho", 
        "id": "sg:person.011105546166.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011105546166.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "SUNY at Buffalo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitchell", 
        "givenName": "Charles E.", 
        "id": "sg:person.010744063106.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744063106.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-9083-2_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001898664", 
          "https://doi.org/10.1007/978-1-4757-9083-2_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-5347(93)90024-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011163732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003579900054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011805891", 
          "https://doi.org/10.1007/s003579900054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2001.0977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023796667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00899747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029192736", 
          "https://doi.org/10.1007/bf00899747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9083-2_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031182332", 
          "https://doi.org/10.1007/978-1-4757-9083-2_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1666/0094-8373(2002)028<0364:maooaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039365541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203165171.ch7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045234165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1997.0607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047908617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02291478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049977738", 
          "https://doi.org/10.1007/bf02291478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02291478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049977738", 
          "https://doi.org/10.1007/bf02291478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9083-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051479037", 
          "https://doi.org/10.1007/978-1-4757-9083-2_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01033230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341646", 
          "https://doi.org/10.1007/bf01033230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150119110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/106351598261094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2992207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070161844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511573064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664430"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Landmark based geometric morphometrics has developed as a powerful set of statistical and visual tools for the study of the covariance patterns of organismal shape change with a range of variables or factors. The approach is limited in the kinds of shape information accessible to it, however, by the need to employ discrete landmarks as the basis for comparison. In particular, curves and complex outlines are difficult to address using strictly landmark-based methods. Information about curves may be incorporated into the study of shape by the use of semi-landmark methods, which allow information about curved surfaces to be incorporated into the framework of landmark-based geometric morphometrics. We present a discussion of several software and statistical approaches needed to carry out combined landmark and semi-landmark analysis. In particular, we demonstrate several approaches to semi-landmark alignment (including the \u201cedgewarp\u201d method) and compare these to standard landmark based methods utilizing a regression analysis of the Ordovician trilobite Triarthrus becki. Abundant landmarks on the cranidium of T. becki allow landmark methods to represent the shape of that structure effectively, making it a good test case for combined landmark and semi-landmark methods. We verify that patterns of ontogenetic change implied by regression models using varying combinations of landmark and semi-landmark information are consistent with one another. Thus, semi-landmark methods and standard landmark based geometric morphometric methods yield commensurate information about this ontogenetic shape transformation. These results suggests that semi-landmark methods show substantial promise for rigorously testing hypotheses that involve the comparison of shapes when an adequate set of landmarks is not available.", 
    "editor": [
      {
        "familyName": "Elewa", 
        "givenName": "Ashraf M. T.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-08865-4_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-05980-3", 
        "978-3-662-08865-4"
      ], 
      "name": "Morphometrics", 
      "type": "Book"
    }, 
    "name": "A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki", 
    "pagination": "67-82", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-08865-4_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "08649335f82439bb3b6c5957595542a7a891703bc1f5ea9829077a7207ff0d0a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090867395"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-08865-4_6", 
      "https://app.dimensions.ai/details/publication/pub.1090867395"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-662-08865-4_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08865-4_6'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-08865-4_6 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nfadf149b5b014de988501f468c6767b9
4 schema:citation sg:pub.10.1007/978-1-4757-9083-2_13
5 sg:pub.10.1007/978-1-4757-9083-2_17
6 sg:pub.10.1007/978-1-4757-9083-2_18
7 sg:pub.10.1007/bf00899747
8 sg:pub.10.1007/bf01033230
9 sg:pub.10.1007/bf02291478
10 sg:pub.10.1007/s003579900054
11 https://doi.org/10.1006/cviu.1997.0607
12 https://doi.org/10.1006/nimg.2001.0977
13 https://doi.org/10.1016/0169-5347(93)90024-j
14 https://doi.org/10.1017/cbo9780511573064
15 https://doi.org/10.1080/10635150119110
16 https://doi.org/10.1080/106351598261094
17 https://doi.org/10.1201/9780203165171.ch7
18 https://doi.org/10.1666/0094-8373(2002)028<0364:maooaa>2.0.co;2
19 https://doi.org/10.2307/2992207
20 schema:datePublished 2004
21 schema:datePublishedReg 2004-01-01
22 schema:description Landmark based geometric morphometrics has developed as a powerful set of statistical and visual tools for the study of the covariance patterns of organismal shape change with a range of variables or factors. The approach is limited in the kinds of shape information accessible to it, however, by the need to employ discrete landmarks as the basis for comparison. In particular, curves and complex outlines are difficult to address using strictly landmark-based methods. Information about curves may be incorporated into the study of shape by the use of semi-landmark methods, which allow information about curved surfaces to be incorporated into the framework of landmark-based geometric morphometrics. We present a discussion of several software and statistical approaches needed to carry out combined landmark and semi-landmark analysis. In particular, we demonstrate several approaches to semi-landmark alignment (including the “edgewarp” method) and compare these to standard landmark based methods utilizing a regression analysis of the Ordovician trilobite Triarthrus becki. Abundant landmarks on the cranidium of T. becki allow landmark methods to represent the shape of that structure effectively, making it a good test case for combined landmark and semi-landmark methods. We verify that patterns of ontogenetic change implied by regression models using varying combinations of landmark and semi-landmark information are consistent with one another. Thus, semi-landmark methods and standard landmark based geometric morphometric methods yield commensurate information about this ontogenetic shape transformation. These results suggests that semi-landmark methods show substantial promise for rigorously testing hypotheses that involve the comparison of shapes when an adequate set of landmarks is not available.
23 schema:editor N3e7e987c8b9742d3b778b58e40974126
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N342897cb83784292a74a32a4f1d89406
28 schema:name A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki
29 schema:pagination 67-82
30 schema:productId N4153235954ec4d41a26dc80dde8b98d6
31 N953fbadb51e041f6a7a14c6e09d4264e
32 Nba4f288d08e04a4eaec9b6794b79237a
33 schema:publisher Nb86c14ffaec14f988a73fdf2fcfc3108
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090867395
35 https://doi.org/10.1007/978-3-662-08865-4_6
36 schema:sdDatePublished 2019-04-15T19:13
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N931d7ba07d70453c96fe51150cb4c90e
39 schema:url http://link.springer.com/10.1007/978-3-662-08865-4_6
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N342897cb83784292a74a32a4f1d89406 schema:isbn 978-3-642-05980-3
44 978-3-662-08865-4
45 schema:name Morphometrics
46 rdf:type schema:Book
47 N3a57de8ec9d540a1a6c34d3dc5da7556 rdf:first sg:person.011105546166.55
48 rdf:rest Nbb0fc2d0a33540f58e671d8a7b1137a2
49 N3e7e987c8b9742d3b778b58e40974126 rdf:first Nf670c1cac0564765bc3114825d9eb2e3
50 rdf:rest rdf:nil
51 N4153235954ec4d41a26dc80dde8b98d6 schema:name doi
52 schema:value 10.1007/978-3-662-08865-4_6
53 rdf:type schema:PropertyValue
54 N8a536885ac7c4beaa731e7a344d75ab5 schema:name Dept. of Physics Canisius College
55 rdf:type schema:Organization
56 N931d7ba07d70453c96fe51150cb4c90e schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N953fbadb51e041f6a7a14c6e09d4264e schema:name readcube_id
59 schema:value 08649335f82439bb3b6c5957595542a7a891703bc1f5ea9829077a7207ff0d0a
60 rdf:type schema:PropertyValue
61 Nb86c14ffaec14f988a73fdf2fcfc3108 schema:location Berlin, Heidelberg
62 schema:name Springer Berlin Heidelberg
63 rdf:type schema:Organisation
64 Nba4f288d08e04a4eaec9b6794b79237a schema:name dimensions_id
65 schema:value pub.1090867395
66 rdf:type schema:PropertyValue
67 Nbb0fc2d0a33540f58e671d8a7b1137a2 rdf:first sg:person.010744063106.46
68 rdf:rest rdf:nil
69 Nf670c1cac0564765bc3114825d9eb2e3 schema:familyName Elewa
70 schema:givenName Ashraf M. T.
71 rdf:type schema:Person
72 Nfadf149b5b014de988501f468c6767b9 rdf:first sg:person.0721202760.15
73 rdf:rest N3a57de8ec9d540a1a6c34d3dc5da7556
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
78 schema:name Statistics
79 rdf:type schema:DefinedTerm
80 sg:person.010744063106.46 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
81 schema:familyName Mitchell
82 schema:givenName Charles E.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744063106.46
84 rdf:type schema:Person
85 sg:person.011105546166.55 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
86 schema:familyName Kim
87 schema:givenName Keonho
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011105546166.55
89 rdf:type schema:Person
90 sg:person.0721202760.15 schema:affiliation N8a536885ac7c4beaa731e7a344d75ab5
91 schema:familyName Sheets
92 schema:givenName H. David
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721202760.15
94 rdf:type schema:Person
95 sg:pub.10.1007/978-1-4757-9083-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051479037
96 https://doi.org/10.1007/978-1-4757-9083-2_13
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-1-4757-9083-2_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031182332
99 https://doi.org/10.1007/978-1-4757-9083-2_17
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-1-4757-9083-2_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001898664
102 https://doi.org/10.1007/978-1-4757-9083-2_18
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf00899747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029192736
105 https://doi.org/10.1007/bf00899747
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01033230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052341646
108 https://doi.org/10.1007/bf01033230
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02291478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049977738
111 https://doi.org/10.1007/bf02291478
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s003579900054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011805891
114 https://doi.org/10.1007/s003579900054
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1006/cviu.1997.0607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047908617
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1006/nimg.2001.0977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023796667
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0169-5347(93)90024-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1011163732
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1017/cbo9780511573064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664430
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/10635150119110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369150
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/106351598261094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369886
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1201/9780203165171.ch7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045234165
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1666/0094-8373(2002)028<0364:maooaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039365541
131 rdf:type schema:CreativeWork
132 https://doi.org/10.2307/2992207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070161844
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.273335.3 schema:alternateName University at Buffalo, State University of New York
135 schema:name SUNY at Buffalo
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...