The Functional Interaction Trap: A Novel Strategy to Study Specific Protein-Protein Interactions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Alok Sharma , Susumu Antoku , Bruce J. Mayer

ABSTRACT

Protein-protein interactions play a central role in almost all aspects of the living cell, and understanding these interactions holds the key to understanding a host of cellular processes. Whether it is an enzyme modifying its substrate, the assembly of subunits of a multiprotein complex, the recognition and binding of a specific ligand, or the polymerization of monomeric subunits such as those of actin, protein-protein interactions are essential for regulating and organizing virtually all physiological responses. Much recent research has focused on understanding these interactions in detail, and while progress has been rapid in many areas, it is clear that new tools to study specific protein-protein interactions are sorely needed. For example, our ability to identify actual or potential protein-protein interactions has outpaced our ability to validate the functional significance of those interactions, or of post-translational modifications that might result from those interactions. In this article we will discuss the Functional Interaction Trap (FIT) approach [13, 44], a novel proteomic tool designed to elucidate the physiological outputs that are mediated by specific protein-protein interactions or post-translational modifications in cellular signaling. We will also discuss in detail a specific application of the FIT approach, where it is used to dissect the functional consequences of tyrosine phosphorylation of specific substrates in the cell. More... »

PAGES

165-182

Book

TITLE

Methods in Proteome and Protein Analysis

ISBN

978-3-642-05779-3
978-3-662-08722-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-662-08722-0_11

DOI

http://dx.doi.org/10.1007/978-3-662-08722-0_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034987680


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Sharma", 
        "givenName": "Alok", 
        "id": "sg:person.0636717431.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636717431.92"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Antoku", 
        "givenName": "Susumu", 
        "id": "sg:person.01062175651.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062175651.96"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Mayer", 
        "givenName": "Bruce J.", 
        "id": "sg:person.01244537451.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244537451.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Protein-protein interactions play a central role in almost all aspects of the living cell, and understanding these interactions holds the key to understanding a host of cellular processes. Whether it is an enzyme modifying its substrate, the assembly of subunits of a multiprotein complex, the recognition and binding of a specific ligand, or the polymerization of monomeric subunits such as those of actin, protein-protein interactions are essential for regulating and organizing virtually all physiological responses. Much recent research has focused on understanding these interactions in detail, and while progress has been rapid in many areas, it is clear that new tools to study specific protein-protein interactions are sorely needed. For example, our ability to identify actual or potential protein-protein interactions has outpaced our ability to validate the functional significance of those interactions, or of post-translational modifications that might result from those interactions. In this article we will discuss the Functional Interaction Trap (FIT) approach [13, 44], a novel proteomic tool designed to elucidate the physiological outputs that are mediated by specific protein-protein interactions or post-translational modifications in cellular signaling. We will also discuss in detail a specific application of the FIT approach, where it is used to dissect the functional consequences of tyrosine phosphorylation of specific substrates in the cell.", 
    "editor": [
      {
        "familyName": "Kamp", 
        "givenName": "Roza Maria", 
        "type": "Person"
      }, 
      {
        "familyName": "Calvete", 
        "givenName": "Juan J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Choli-Papadopoulou", 
        "givenName": "Theodora", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-662-08722-0_11", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-05779-3", 
        "978-3-662-08722-0"
      ], 
      "name": "Methods in Proteome and Protein Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "specific protein-protein interactions", 
      "protein-protein interactions", 
      "post-translational modifications", 
      "potential protein-protein interactions", 
      "novel proteomic tools", 
      "assembly of subunits", 
      "multiprotein complexes", 
      "interaction trap", 
      "cellular processes", 
      "proteomic tools", 
      "cellular signaling", 
      "tyrosine phosphorylation", 
      "trap approach", 
      "physiological outputs", 
      "specific substrates", 
      "functional consequences", 
      "monomeric subunits", 
      "functional significance", 
      "physiological responses", 
      "subunits", 
      "specific ligands", 
      "central role", 
      "cells", 
      "novel strategy", 
      "phosphorylation", 
      "new tool", 
      "signaling", 
      "actin", 
      "interaction", 
      "enzyme", 
      "host", 
      "binding", 
      "substrate", 
      "assembly", 
      "modification", 
      "complexes", 
      "ability", 
      "role", 
      "ligands", 
      "recent research", 
      "key", 
      "response", 
      "traps", 
      "tool", 
      "consequences", 
      "significance", 
      "progress", 
      "recognition", 
      "process", 
      "detail", 
      "strategies", 
      "approach", 
      "aspects", 
      "area", 
      "example", 
      "polymerization", 
      "research", 
      "applications", 
      "specific applications", 
      "output", 
      "fit approach", 
      "article"
    ], 
    "name": "The Functional Interaction Trap: A Novel Strategy to Study Specific Protein-Protein Interactions", 
    "pagination": "165-182", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034987680"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-662-08722-0_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-662-08722-0_11", 
      "https://app.dimensions.ai/details/publication/pub.1034987680"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_254.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-662-08722-0_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08722-0_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08722-0_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08722-0_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-662-08722-0_11'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      22 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-662-08722-0_11 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nf17599c1c30842ccb83da4dc4860e6d0
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description Protein-protein interactions play a central role in almost all aspects of the living cell, and understanding these interactions holds the key to understanding a host of cellular processes. Whether it is an enzyme modifying its substrate, the assembly of subunits of a multiprotein complex, the recognition and binding of a specific ligand, or the polymerization of monomeric subunits such as those of actin, protein-protein interactions are essential for regulating and organizing virtually all physiological responses. Much recent research has focused on understanding these interactions in detail, and while progress has been rapid in many areas, it is clear that new tools to study specific protein-protein interactions are sorely needed. For example, our ability to identify actual or potential protein-protein interactions has outpaced our ability to validate the functional significance of those interactions, or of post-translational modifications that might result from those interactions. In this article we will discuss the Functional Interaction Trap (FIT) approach [13, 44], a novel proteomic tool designed to elucidate the physiological outputs that are mediated by specific protein-protein interactions or post-translational modifications in cellular signaling. We will also discuss in detail a specific application of the FIT approach, where it is used to dissect the functional consequences of tyrosine phosphorylation of specific substrates in the cell.
7 schema:editor N4a6279ea99de49a1b5ccb66910ebd33c
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N6e4c7668ed1c4bae84e32fe90f23c426
11 schema:keywords ability
12 actin
13 applications
14 approach
15 area
16 article
17 aspects
18 assembly
19 assembly of subunits
20 binding
21 cells
22 cellular processes
23 cellular signaling
24 central role
25 complexes
26 consequences
27 detail
28 enzyme
29 example
30 fit approach
31 functional consequences
32 functional significance
33 host
34 interaction
35 interaction trap
36 key
37 ligands
38 modification
39 monomeric subunits
40 multiprotein complexes
41 new tool
42 novel proteomic tools
43 novel strategy
44 output
45 phosphorylation
46 physiological outputs
47 physiological responses
48 polymerization
49 post-translational modifications
50 potential protein-protein interactions
51 process
52 progress
53 protein-protein interactions
54 proteomic tools
55 recent research
56 recognition
57 research
58 response
59 role
60 signaling
61 significance
62 specific applications
63 specific ligands
64 specific protein-protein interactions
65 specific substrates
66 strategies
67 substrate
68 subunits
69 tool
70 trap approach
71 traps
72 tyrosine phosphorylation
73 schema:name The Functional Interaction Trap: A Novel Strategy to Study Specific Protein-Protein Interactions
74 schema:pagination 165-182
75 schema:productId N1a7b6c0697e44cdca7ea5d85fb3637ff
76 Ncfdeb0effd2d40d0b402beb39ab3f232
77 schema:publisher Nc9b311e993b84971b26b08ed72247cad
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034987680
79 https://doi.org/10.1007/978-3-662-08722-0_11
80 schema:sdDatePublished 2022-12-01T06:49
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nfae1e37fc56e4b1eb3894e70e837ade3
83 schema:url https://doi.org/10.1007/978-3-662-08722-0_11
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N06f7647718564c88802ecc5154cc6de2 schema:familyName Kamp
88 schema:givenName Roza Maria
89 rdf:type schema:Person
90 N1a7b6c0697e44cdca7ea5d85fb3637ff schema:name dimensions_id
91 schema:value pub.1034987680
92 rdf:type schema:PropertyValue
93 N257b83984c2248c3b046a3757e115629 rdf:first Nead2725694ec4d0a88e4ea65e215d4e1
94 rdf:rest rdf:nil
95 N4a6279ea99de49a1b5ccb66910ebd33c rdf:first N06f7647718564c88802ecc5154cc6de2
96 rdf:rest Nf7e66103ed574fc983b2819f642f8afb
97 N6e4c7668ed1c4bae84e32fe90f23c426 schema:isbn 978-3-642-05779-3
98 978-3-662-08722-0
99 schema:name Methods in Proteome and Protein Analysis
100 rdf:type schema:Book
101 Nc9b311e993b84971b26b08ed72247cad schema:name Springer Nature
102 rdf:type schema:Organisation
103 Ncfdeb0effd2d40d0b402beb39ab3f232 schema:name doi
104 schema:value 10.1007/978-3-662-08722-0_11
105 rdf:type schema:PropertyValue
106 Nda12e5c81b9949b1aa4b7180398b7399 rdf:first sg:person.01062175651.96
107 rdf:rest Nf94696da8135417d83b6b331c830bd2a
108 Nead2725694ec4d0a88e4ea65e215d4e1 schema:familyName Choli-Papadopoulou
109 schema:givenName Theodora
110 rdf:type schema:Person
111 Nf0b1cc20e7564555ac4ddd457d1e92da schema:familyName Calvete
112 schema:givenName Juan J.
113 rdf:type schema:Person
114 Nf17599c1c30842ccb83da4dc4860e6d0 rdf:first sg:person.0636717431.92
115 rdf:rest Nda12e5c81b9949b1aa4b7180398b7399
116 Nf7e66103ed574fc983b2819f642f8afb rdf:first Nf0b1cc20e7564555ac4ddd457d1e92da
117 rdf:rest N257b83984c2248c3b046a3757e115629
118 Nf94696da8135417d83b6b331c830bd2a rdf:first sg:person.01244537451.59
119 rdf:rest rdf:nil
120 Nfae1e37fc56e4b1eb3894e70e837ade3 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
126 schema:name Biochemistry and Cell Biology
127 rdf:type schema:DefinedTerm
128 sg:person.01062175651.96 schema:familyName Antoku
129 schema:givenName Susumu
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062175651.96
131 rdf:type schema:Person
132 sg:person.01244537451.59 schema:familyName Mayer
133 schema:givenName Bruce J.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244537451.59
135 rdf:type schema:Person
136 sg:person.0636717431.92 schema:familyName Sharma
137 schema:givenName Alok
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636717431.92
139 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...